A MEMETIC ALGORITHM WITH VARIABLE LENGTH CHROMOSOME FOR ROBOT PATH PLANNING UNDER DYNAMIC ENVIRONMENTS

Jianjun Ni, Kang Wang, Qingyun Cao, Zubair Khan, and Xinnan Fan

References

  1. [1] T.-K. Wang, Q. Dang, and P.-Y. Pan, Path planning approachin unknown environment, International Journal of Automationand Computing, 7(3), 2010, 310–316.
  2. [2] M.A.K. Jaradat, M.H. Garibeh, and E.A. Feilat, Autonomousmobile robot dynamic motion planning using hybrid fuzzypotential field, Soft Computing, 16(1), 2012, 153–164.
  3. [3] E. Galceran and M. Carreras, A survey on coverage pathplanning for robotics, Robotics and Autonomous Systems,61(12), 2013, 1258–1276.
  4. [4] L. Deng, X. Ma, J. Gu, Y. Li, Z. Xu, and Y. Wang, Artificialimmune network-based multi-robot formation path planningwith obstacle avoidance, International Journal of Robotics andAutomation, 31(3), 2016, 233–242.
  5. [5] S. Ge and Y. Cui, Dynamic motion planning for mobile robotsusing potential field method, Autonomous Robots, 13(3), 2002,207–222.
  6. [6] T.-K. Lee, S.-H. Baek, Y.-H. Choi, and S.-Y. Oh, Smoothcoverage path planning and control of mobile robots basedon high-resolution grid map representation, Robotics andAutonomous Systems, 59(10), 2011, 801–812.
  7. [7] J. Kim, M. Kim, and D. Kim, Variants of the quantizedvisibility graph for efficient path planning, Advanced Robotics,25(18), 2011, 2341–2360.
  8. [8] J. Ni, L. Wu, X. Fan, and S.X. Yang, Bioinspired intelligentalgorithm and its applications for mobile robot control: Asurvey, Computational Intelligence & Neuroscience, 2016(2),2016, 1–16.
  9. [9] J. Chen, S. Xie, H. Li, J. Luo, and K. Feng, Robot pathplanning based on adaptive integrating of genetic and ant colonyalgorithm, International Journal of Innovative Computing,Information and Control, 11(3), 2015, 833–850.
  10. [10] D. Liu, L. Wang, and K. Tan, Design and control of intelligentrobotic systems (Heidelberg: Springer, 2009).
  11. [11] O. Montiel, U. Orozco-Rosas, and R. Sepulveda, Path planningfor mobile robots using bacterial potential field for avoidingstatic and dynamic obstacles, Expert Systems with Applications,42(12), 2015, 5177–5191.
  12. [12] J. Ni, X. Li, M. Hua, and S.X. Yang, Bioinspired neuralnetwork-based Q-learning approach for robot path planning inunknown environments, International Journal of Robotics andAutomation, 31(6), 2016, 464–474.
  13. [13] Y. Xue and H. Liu, Optimal path planning in complex indoorenvironment based on improved PSO, Journal of Computa-tional Information Systems, 7(6), 2011, 2158–2165.
  14. [14] P. He and S. Dai, Real-time stealth corridor path planning forfleets of unmanned aerial vehicles in low-altitude penetration,International Journal of Robotics and Automation, 30(1), 2015,60–69.
  15. [15] J. Botzheim, Y. Toda, and N. Kubota, Bacterial memeticalgorithm for offline path planning of mobile robots, MemeticComputing, 4(1), 2012, 73–86.
  16. [16] Z. Zhu, F. Wang, S. He, and Y. Sun, Global path planningof mobile robots using a memetic algorithm, InternationalJournal of Systems Science, 46(11), 2015, 1982–1993.
  17. [17] G. Fraser, A. Arcuri, and P. McMinn, A memetic algorithm forwhole test suite generation, Journal of Systems and Software,103(C), 2015, 311–327.
  18. [18] H. Qu, K. Xing, and T. Alexander, An improved genetic algo-rithm with co-evolutionary strategy for global path planning ofmultiple mobile robots, Neurocomputing, 120, 2013, 509–517.
  19. [19] P.-C. Chang, S.-S. Chen, and C.-Y. Fan, Mining gene structuresto inject artificial chromosomes for genetic algorithm in singlemachine scheduling problems, Applied Soft Computing Journal,8(1), 2008, 767–777.
  20. [20] P. Foldesi and J. Botzheim, Modeling of loss aversion in solvingfuzzy road transport traveling salesman problem using eugenicbacterial memetic algorithm, Memetic Computing, 2(4), 2010,259–271.
  21. [21] A. Prugel-Bennett, Modeling crossover-induced linkage ingenetic algorithms, IEEE Transactions on Evolutionary Com-putation, 5(4), 2001, 376–387.
  22. [22] G.E. Jan, K.Y. Chang, and I. Parberry, Optimal path planningfor mobile robot navigation, IEEE/ASME Transactions onMechatronics, 13(4), 2008, 451–460.
  23. [23] P. Raja and S. Pugazhenthi, On-line path planning for mobilerobots in dynamic environments, Neural Network World, 22(1),2012, 67–83.
  24. [24] Y. Gao and S.-D. Sun, Local path planning of mobile robotsin dynamic unknown environment based on prediction of col-lision, 2009 Int. Conf. Measuring Technology and Mechatron-ics Automation, ICMTMA 2009, vol. 2, Zhangjiajie, Hunan,China, 2009, 84–88.
  25. [25] Y. Wang, I.P.W. Sillitoe, and D.J. Mulvaney, Mobile robotpath planning in dynamic environments, Proceedings – IEEEInt. Conf. Robotics and Automation, Rome, Italy, 2007, 71–76.
  26. [26] L. Sun, Y. Luo, X. Ding, and L. Wu, Path planning andobstacle avoidance for mobile robots in a dynamic environment,Open Automation and Control Systems Journal, 6(1), 2014,77–83.423

Important Links:

Go Back