FOOT AND BODY CONTROL OF HUMANOID ROBOTS USING FUZZY CONTROLLER

Farshad Samadi, Sohrab Khanmohammadi, and Amir R. Ghiasi

References

  1. [1] M. Vukobratovic and D. Juricic, Contribution to the synthesis of biped gait, IEEE Transactions on Bio-Medical Engineering, 16, 1969, 1–6.
  2. [2] A. Takanish, M. Tochizawa, H. Karaki, and I. Kato, Dynamic biped walking stabilized with optimal trun and waist motion, Proc. IEEE/RSJ International Workshop on Intelligent Robotics and Systems, 1989, 187–192.
  3. [3] J. Yamaguchi, A. Takanish, and I. Kato, Development of a biped walking robot compensating for three-axis moment by trunk motion, Proc. IEEURSJ International Workshop on Intelligent Robotics and Systems, 1993, 561–566.
  4. [4] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and H. Hirukawa, Biped walking pattern generation by using preview control of zero-moment point, Proc. IEEE International Conf. Robotics and Automation, 2003, 1620– 1626.
  5. [5] S. Kajita and K. Tani, Experimental study of biped dynamic walking in the linear inverted pendulum mode, Proc. IEEE International Conf. Robotics and Automation, 1995, 2885– 2891.
  6. [6] Y. Fujimoto and A. Kawamura, Three dimensional digital simulation and autonomous walking control for eight-axis biped robot, Proc. IEEE International Conf. Robotics and Automation, 1995, 2877–2884.
  7. [7] J.H. Park and K.D. Kim, Biped robot walking using gravity compensated inverted pendulum mode and computed torque control, Proc. IEEE International Conf. Robotics and Automation, 1998, 3528–3533.
  8. [8] F. Samadi and H. Moghadam-Fard, Pattern generation for humanoid robot with natural ZMP trajectory, 2014 Second RSI/ISM International Conf. Robotics and Mechatronics (ICRoM), Tehran, 2014, 570–575.
  9. [9] Z. Li, N.G. Tsagarakis, and D.G. Caldwell, Walking pattern generation for a humanoid robot with compliant joints, Autonomous Robots, 35, 2013, 1–14.
  10. [10] K. Suzuki, H. Imai, Y. Kawamura, and Y. Sankai, Gait control of human and humanoid on irregular terrain considering interaction with environment, Proc. IEEE Int. Workshop on Robot Human Interactive Communication, 2003, 277–284.
  11. [11] S. Kajita and K. Tani, Adaptive gait control of a biped robot based on realtime sensing of the ground profile, Proc. IEEE Int. Conf. on Robotics and Automation, 1996, 570–577.
  12. [12] T. Sato, S. Sakaino, and K. Ohnishi, Walking stabilization control of biped robot using virtual plane, Proc. JIASC, pp. 11–557, August 2009 (in Japanese).
  13. [13] S. Shimmyo, T. Sato, and K. Ohnishi, Biped walking pattern generation by using preview control with virtual plane method, IEEE Int. Workshop on Advanced Motion Control, 2010, 21–24.
  14. [14] J.H. Park, Impedance control for biped robot locomotion, IEEE Transactions on Robotics and Automation, 17(6), 2001, 870–882. 322
  15. [15] J.S. Kong, E.H. Lee, B.H. Lee, and J.G. Kim, Study on the real-time walking control of a humanoid robot using fuzzy algorithm, International Journal of Control, Automation, and Systems, 6(4), 2008, 551–558.
  16. [16] J.H. Park and E.S. Kim, Foot and body control of biped robots to walk on irregularly protruded uneven surfaces, IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, 39(1), 2009, 289–297.
  17. [17] Y.-D. Hong and J.-H. Kim, Walking pattern generation on inclined uneven terrains for a humanoid robots, Robot Intelligence Technology and Applications, 208, 2013, 209–221.

Important Links:

Go Back