EXTENDED STATE OBSERVER-BASED ADAPTIVE CONTROL FOR A CLASS OF NONLINEAR SYSTEM WITH UNCERTAINTIES

Mingyue Cui, Hongzhao Liu, and Wei Liu

References

  1. [1] K.C. Hsu, W.Y. Wang, and P.Z. Lin, Sliding mode control for uncertain nonlinear systems with multiple inputs containing sector nonlinearities and deadzones, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34(1), 2004, 374–380.
  2. [2] G. Bartolini and A. Ferrara, Multi-input sliding mode control of a class of uncertain nonlinear systems, IEEE Transactions on Automatic Control, 41(11), 1996, 1662–1666.
  3. [3] D.W. Qian, J.Q. Yi, X.J. Liu, et al., Robust control by sliding mode for a class of uncertain underactuated systems with saturation, Control & Intelligent Systems, 38(2), 2010, 87–94.
  4. [4] C.H. Lee and Y.C. Lin, An adaptive type 2 fuzzy neuralcontroller for nonlinear uncertain systems, Control & Intelligent Systems, 33(1), 2005, 13–25.
  5. [5] F.O. Tellez, A.G. Loukianov, E.N. Sanchez, and E. Jose Bayro Corrochano, Decentralized neural identification and control for uncertain nonlinear systems: Application to planar robot, Journal of the Franklin Institute, 347(6), 2010, 1015–1034.
  6. [6] A. Bazaei and V.J. Majd, Feedback linearization of discrete time nonlinear uncertain plants via first-principles-based serial neuro-gray-box models, Journal of Process Control, 13(8), 2003, 819–830.
  7. [7] M. Benyakhlef and L. Radouane, Adaptive fuzzy control of a class of decentralized nonlinear systems and unknown dynamics, Control & Intelligent Systems, 35(1), 2007, 60–65.
  8. [8] Y. Pan, Y. Zhou, T. Sun, and M.J. Er, Composite adaptive fuzzy H∞ tracking control of uncertain nonlinear systems, Neurocomputing, 99(1), 2013, 15–24.
  9. [9] X. Liu, R. Tao, and M. Tavakoli, Adaptive control of uncertain nonlinear teleoperation systems, Mechatronics, 24(1) 2014, 66–78.
  10. [10] A. Lor´ıa, E. Panteley, and A. Zavala-R´ıo, Adaptive observers with persistency of excitation for synchronization of chaotic systems, IEEE Transactions on Circuits and Systems I: Regular Papers, 56(12), 2009, 2703–2716.
  11. [11] M. Ataei, A. Kiyoumarsi, and B. Ghorbani, Control of chaos in permanent magnet synchronous motor by using optimal Lyapunov exponents placement, Physics Letters A, 374(41), 2010, 4226–4230.
  12. [12] D. Zhao, T. Zou, S. Li, and Q. Zhu, Adaptive backstepping sliding mode control for leader–follower multi-agent systems, IET Control Theory and Application, 6(8), 2012, 1109–1117.
  13. [13] J.K. Liu and F.C. Sun, Research and development on theory and algorithms of sliding mode control, Control Theory and Application, 24(3), 2007, 407–418.
  14. [14] J.X. Xu, Y.J. Pan, and T.H. Lee, A gain scheduled sliding mode control scheme using filtering techniques with applications to multilink robotic manipulators, Journal of Dynamic Systems, Measurement, and Control, 122(4), 2000, 641–649.
  15. [15] X. Yan, S.K. Spurgeon, and C. Edwards, State and parameter estimation for nonlinear delay systems using sliding mode techniques. IEEE Transactions on Automatic Control, 58(4), 2013, 1023–1029.
  16. [16] X. Wei and L. Guo, Composite disturbance-observer-based control and terminal sliding mode control for nonlinear systems with disturbances, International Journal of Control, 82(6), 2009, 1082–1098.
  17. [17] G. Bartolini, A. Pisano, E. Punta, and E. Usai, A survey of applications of second-order sliding mode control to mechanical systems, International Journal of Control, 76(9–10), 2003, 875–892.
  18. [18] Y. Eun, J.H. Kim, K. Kim, and D. Cho, Discrete-time variable structure controller with a decoupled disturbance compensator and its application to a CNC servomechanism, IEEE Transactions on Control Systems Technology, 7(4), 1999, 414–423.
  19. [19] L.M. Hou, H.G. Zhang, X.C. Liu, E.H. Chu, et al., Adaptive fuzzy sliding mode soft switch of speed sensorless for PMSM based on robust passivity-based control, Control and Decision, 25(5), 2010, 686–690.
  20. [20] V. Goyal, V.K. Deolia, and T.N. Sharma, Robust sliding mode control for nonlinear discrete-time delayed systems based on neural network, Intelligent Control and Automation, 6(1), 2015, 75–83.
  21. [21] J.Q. Han, From PID to active disturbance rejection control, IEEE Transactions on Industrial Electronics, 56(3), 2009, 900–906.
  22. [22] H.K. Khalil, Nonlinear systems, 3rd ed. (Englewood Cliffs, NJ: Prentice Hall, 2002).
  23. [23] J.E. Slotine and W.P. Li, Applied nonlinear control. (Englewood Cliffs, NJ: Prentice Hall, 1991).
  24. [24] Z. Gao, Active disturbance rejection control: A paradigm shift in feedback control system design, Proceedings of American Control Conference. Piscataway: IEEE, 2006, 2399–2405.
  25. [25] J.N. Teoh, C. Du, G. Guo, and L. Xie, Rejecting high frequency disturbances with disturbance observer and phase stabilized control, Mechatronics, 18(1), 2008, 53–60.

Important Links:

Go Back