Wenbo Yuan, Zhiqiang Cao, Yujia Zhang, and Min Tan


  1. [1] B.P. Larouche and Z.H. Zhu, Position-based visual servoing inrobotic capture of moving target enhanced by Kalman filter,International Journal of Robotics and Automation, 30(3), 2015,267–277.
  2. [2] Y. Wang, R. Xiong, and Q. Li, EM-based point to plane ICPfor 3D simultaneous localization and mapping, InternationalJournal of Robotics and Automation, 28(3), 2013, 234–244.
  3. [3] J. Hsiao, S. Yeh, and P. Hsu, Target position estimation usingmulti-vision system implemented on distributed mobile robots,International Journal of Robotics and Automation, 28(2), 2013,154–169.
  4. [4] C. Chen, S. Chiu, J. Lee, S. Chen, S. Pong, and C. Lu, A frame-work of barcode localization for mobile robots, InternationalJournal of Robotics and Automation, 28(4), 2013, 317–330.
  5. [5] W. Ye, Z. Li, C. Yang, J. Sun, C. Su, and R. Lu, Vision-Based Human Tracking Control of a Wheeled Inverted Pendu-lum Robot, IEEE Transactions on Cybernetics, 46(11), 2016,2423–2434.
  6. [6] H. Xiao, Z. Li, C. Yang, W. Yuan, and L. Wang, RGB-Dsensor-based visual target detection and tracking for an intelligent wheelchair robot in indoors environments, InternationalJournal of Control, Automation and Systems, 13(3), 2015,521–529.
  7. [7] Z. Li, C. Yang, C. Su, J. Deng, and W. Zhang, Vision-BasedModel Predictive Control for Steering of a Nonholonomic Mo-bile Robot, IEEE Transactions on Control Systems Technology,24(2), 2015, 553–564.
  8. [8] T. Vojir, J. Noskova, and J. Matas, Robust scale-adaptivemean-shift for tracking, Pattern Recognition Letters, 49, 2014,250–258.
  9. [9] Y. Song, C. Li, L. Wang, P. Hall, and P. Shen, Robust visualtracking using structural region hierarchy and graph matching,Neurocomputing, 89, 2012, 12–20.
  10. [10] L. Sun and G. Liu, Visual Object Tracking Based on Combi-nation of Local Description and Global Representation, IEEETransactions on Circuits and Systems for Video Technology,21(4), 2011, 408–420.
  11. [11] H. Bay, A. Ess, T. Tuytelaars, and L.V. Gool, Speeded-Up Robust Features (SURF), Computer Vision and ImageUnderstanding, 110(3), 2008, 346–359.
  12. [12] Z. Kalal, K. Mikolajczyk, and J. Matas, Tracking-learning-detection, IEEE Transactions on Pattern Analysis and Ma-chine Intelligence, 34(7), 2013, 1409–1422.
  13. [13] Y. Wang, F. Sun, Y. Zhang, H. Liu, and H. Min, Centraldifference particle filter applied to transfer alignment for SINSon missiles, IEEE Transactions on Aerospace and ElectronicSystems, 48(1), 2012, 375–387.
  14. [14] R. Hess and A. Fern, Discriminatively trained particle filters forcomplex multi-object tracking, IEEE Conference on ComputerVision and Pattern Recognition, Miami, United States: IEEEComputer Society, 2009, 240–247.
  15. [15] Z. Liang and Y. Hao, Adaptive particle filter for self-localizationof RoboCup 3D soccer robots, International Journal of Roboticsand Automation, 29(3), 2014, 268–273.
  16. [16] K. Kawabata, H. Aonuma, K. Hosoda, and J. Xue, Controlledinteraction with the cricket based on on-line pose estimationof mobile robot, IEEE International Conference on Roboticsand Biomimetics, Shenzhen, China: IEEE Computer Society,2013, 1347–1352.
  17. [17] F. Janabi-Sharifi and M. Marey, A Kalman-filter-based methodfor pose estimation in visual servoing, IEEE Transactions onRobotics, 26(5), 2010, 939–947.
  18. [18] A. Okatan, C. Hajiyev, and U. Hajiyeva, Fault detection insensor information fusion Kalman filter, AEU-InternationalJournal of Electronics and Communications, 63(9), 2009,762–768.
  19. [19] G. Agamennoni, J.I. Nieto, and E.M. Nebot, An outlier-robustKalman filter, IEEE International Conference on Robotics andAutomation, Shanghai, 2011, 1551–1558.
  20. [20] H.E. Soken and C. Hajiyev, Pico satellite attitude estimation viarobust unscented Kalman filter in the presence of measurementfaults, ISA Transactions, 49(3), 2010, 249–256.
  21. [21] M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp,A tutorial on particle filters for online nonlinear/non-GaussianBayesian tracking, IEEE Transactions on Signal Processing,50(2), 2002, 174–188.
  22. [22] M.A. Fischler and R.C. Bolles, Random sample consensus:A paradigm for model fitting with applications to imageanalysis, Communications of the ACM, 24(6), 1981, 381–395.

Important Links:

Go Back