Qiangqiang Cheng, Peter X. Liu, Pinghua Lai, Shaoping Xu, Yanni Zou, Chunquan Li, and Lingyan Hu


  1. [1] Q.P. Zhao, Virtual reality overview, Science in China (SeriesF: Information Sciences), 39(1), 2009, 2–46.
  2. [2] J. Carmigniani and B. Furht, Augmented reality: An overview,in B. Furht (ed.), Handbook of augmented reality (New York:Springer, 2011), 3–46.
  3. [3] D.B. Kaber, Y.J. Li, M. Clamann, and Y.S. Lee, Investigatinghuman performance in a virtual reality haptic simulator asinfluenced by fidelity and system latency, IEEE Transaction onSystem, Man and Cybernetics – Part A: Systems and Humans,42(6), 2012, 1562–1566.
  4. [4] K.C. Walker and D.W.L. Wang, Analytical modelling of deformable objects for haptics virtual environments, International Journal of Robotic & Automation, 27(1), 2012, 92–100.
  5. [5] P. Claudio and P. Maddalena, Overview: Virtual reality inmedicine, Journal of Virtual Worlds Research, 7(1), 2014,1–36.
  6. [6] B. Chebbi, D. Lazaroff, and P.X. Liu, A collaborative virtualhaptic environment for surgical training and tele-mentoring,International Journal of Robotic & Automation, 22(1), 2007,69–78.
  7. [7] E. Cueto and F. Chinesta, Real time simulation for computational surgery: A review, Advanced Modeling and Simulationin Engineering Sciences, 1(11), 2014, 1–18.
  8. [8] S.P. Xu, X.P. Liu, H. Zhang, and L.Y. Hu, A nonlinearviscoelastic tensor-mass visual model for surgery simulation,IEEE Transactions on Instrumentation & Measurement, 60(1),2011, 14–20.
  9. [9] X.P. Liu, S.P. Xu, H. Zhang, and L.Y. Hu, A new hybrid softtissue model for visio-haptic simulation, IEEE Transactionson Instrumentation & Measurement, 6(11), 2011, 3570–3581.
  10. [10] J. Wu, R. Westermann, and C. Dick, A survey of physicallybased simulation of cuts in deformable bodies, ComputerGraphics Forum, 34(6), 2015, 161–187.
  11. [11] M. Bro-Nielsen, Finite element modeling in surgery simulation,Proceedings of the IEEE, 86(3), 1998, 489–503.
  12. [12] H. Delingette, S. Cotin, and N. Ayaehe, A hybrid elastic modelallowing real-time cutting, deformations and force-feedback forsurgery training and simulation, Computer Animation, 16(8),1999, 70–81.
  13. [13] D. Bielser, A.V. Maiwald, and M.H. Gross, Interactive cutsthrough 3-dimensional soft tissue, Computer Graphics Forum,18(3), 2001, 31–38.
  14. [14] Y.J. Lim, J. Hu, C.Y. Chang, and N. Taredlla, Soft tissuedeformation and cutting simulation for the multimodal surgerytraining, Proc. 19th IEEE Symposium on Computer-BasedMedical Systems, Washington, DC, 2006, 635–640.
  15. [15] C. Dick, J. Georgii, and R. Westermann, A hexahedral multi-grid approach for simulating cuts in deformable objects, IEEETransactions on Visualization and Computer Graphics, 17(11),2011, 1663–1675.
  16. [16] M. Desbrun and M.P. Cani, Animating soft substances withimplicit surfaces, Proc. SIGGRAPH, Los Angeles, CA, 1995,287–290.
  17. [17] M. M¨uller, R. Keiser, A. Nealen, et al., Point-based animationof elastic, plastic and melting objects, Proc. ACM SIGGRAPH,Switzerland, 2004, 141–151.
  18. [18] D. Steinemann, M.A. Otaduy, and M. Gross, Splitting meshlessdeforming objects with explicit surface tracking, GraphicalModels, 71(6), 2009, 209–220.
  19. [19] H. Jung and D.Y. Lee, Real-time cutting simulation of mesh-less deformable object using dynamic bounding volume hier-archy, Computer Animation and Virtual Worlds, 23(5), 2012,489–501.
  20. [20] X. Jin, G.R. Joldes, K. Miller, et al., Meshless algorithm forsoft tissue cutting in surgical simulation, Computer Methodsin Biomedical Engineering, 17(7), 2014, 800–811.
  21. [21] D. Bielser and M. Gross, Interactive simulation of surgicalcuts, Proc. Pacific Conference Graphics, Hong Kong, 203(2),2000, 116–442.
  22. [22] D. Bielser, P. Glardon, M. Teschner, and M. Gross, A statemachine for real-time cutting of tetrahedral meshes, GraphicalModels, 66(6), 2003, 377–386.
  23. [23] A.B. Mor and T. Kanade, Modifying soft tissue models:Progressive cutting with minimal new element creation, in ScottL. Delp, Anthony M. Digoia, and Branislav Jaramaz (eds.),Medical image computing and computer-assisted intervention– MICCAI 2000, 1935 (New York: Springer, 2000) 598–607.
  24. [24] S.Y. Jia and Z.K. Pan, Cutting simulation based on minimaltetrahedron subdivision method in virtual surgery, Journal ofSystem Simulation, 20(6), 2008, 1488–1492.
  25. [25] D. Steinemann, M.A. Otaduy, and M. Gross, Fast arbi-trary splitting of deforming objects, Proc. ACM SIGGRAPH,Switzerland, 2006, 63–72.
  26. [26] N. Molino, Z.S. Bao, and R. Fedkiw, Virtual node algorithm forchanging mesh topology during simulation, ACM Transactionson Graphic, 23(3), 2004, 385–392.
  27. [27] E. Sifakis, K.G. Der, and R. Fedkiw, Arbitrary cutting ofdeformable tetrahedralized objects, Proc. 2007 ACM SIG-GRAPH, Switzerland, 2007, 73–80.
  28. [28] N. Pietroni, F. Ganovelli, P. Cignoni, and R. Scopigno, Splittingcubes: A fast and robust technique for virtual cutting, TheVisual Computer, 25(3), 2009, 227–239.
  29. [29] L. Jerabkova, G. Bousquet, S. Barbier, et al., Volumetric modeling and interactive cutting of deformable bodies,Progress in Biophysics and Molecular Biology, 103(2), 2010,217–224.
  30. [30] J. Wu, C. Dick, and R. Westermann, Interactive high-resolutionboundary surfaces for deformable bodies with changing topology, 8Th Workshop on Virtual Reality Interaction and PhysicalSimulation, Lyon, France, 2011, 29–38.
  31. [31] J. Wu, C. Dick, and R. Westermann, Efficient collision detectionfor composite finite element simulation of cuts in deformablebodies, The Visual Computer, 29(6), 2013, 739–749.
  32. [32] M. Pauly, R. Keiser, B. Adams, et al., Meshless animation offracturing solids, ACM Transaction on Graphics, 24(3), 2005,957–964.
  33. [33] N. Liu, X. He, S. Li, and G.P. Wang, Meshless simulationof brittle fracture, Computer Animation and Virtual Worlds,22(2), 2011, 115–124.
  34. [34] L.B. Lucy, A numerical approach to the testing of the fissionhypothesis, Astronomical Journal, 8(12), 1977, 1013–1024.
  35. [35] B. Nayroles, P. Touzot, and P. Villon, Generalizing the finiteelement method: Diffuse approximation and diffuse elements,Computational Mechanics, 10(5), 1992, 307–318.
  36. [36] P. Lancaster and K. Salkauskas, Surfaces generated by movingleast square methods, Mathematics Computation, 37(155),1981, 141–158.
  37. [37] C.A. Duarte and J.T. Oden, Hp clouds-an h-p meshless method,Numerical Methods for Partial Differential Equations, 12(6),1998, 673–705.
  38. [38] S.N. Atluri and T.L. Zhu, The meshless local Petrov–Galerkin(MLPG) approach for solving problems in elasto-statics, Computational Mechanics, 25(2), 2000, 169–179,
  39. [39] T. Belytschko, Y.Y. Lu, and L. Gu, Element-free Galerkinmethods, International Journal for Numerical Method inEngineering, 37(2), 1994, 229-256.
  40. [40] X. Zhang, K.Z. Song, and M.W. Lu, Meshless method basedon collocation with Radial basis functions, ComputationalMechanics, 26(4), 2000, 333–343.
  41. [41] W. Chen, New RBF collocation methods and kernel RBFwith applications, in M. Griebel and M.A. Schweitzer (ed.),Meshfree methods for partial differential equations, vol. 26(Berlin: Springer, 2000) 75–86.
  42. [42] W.K. Liu, Y.J. Chen, R.A. Uras, and C.T. Chang, Generalizedmultiple scale reproducing kernel particle, Computer Meth-ods in Applied Mechanics and Engineering, 139(1–4), 1996,91–157.
  43. [43] W.K. Liu and Y.J. Chen, Wavelet and multiple scale reproducing kernel methods, International Journal for NumericalMethod in Fluids, 21(10), 1995, 901–931.
  44. [44] E. Onarte, A finite point method in computational mechanics,International Journal for Numerical Method in Engineering,39(22), 1996, 3839–3866.
  45. [45] S.R. Idelsohn, E. Onate, N. Calvo, and F.D. Pin, The meshlessfinite element method, International Journal for NumericalMethod in Engineering, 58(6), 2003, 893–912.
  46. [46] S. Hao, H.S. Park, and W.K. Liu, Moving particle finiteelement method, International Journal for Numerical Methodin Engineering, 53(8), 2002, 1937–1958.
  47. [47] S.N. Atluri, J. Sladek, and V. Sladek, The local boundaryintegral equation (LBIE) and its meshless implementationfor linear elasticity, Computational Mechanics, 25(2), 2000,180-198.
  48. [48] M.K. Chati, J.S. Mukher, and G.H. Paulino, The meshlesshypersingular boundary node for three dimensional potentialtheory and linear elastic problems, Engineering Analysis withBoundary Elements, 25(8), 2001, 639–653.
  49. [49] V.P. Nguyen, T. Rabczuk, S. Bordas, and M. Duflot, Mesh-less method: A review and computer implementation as-pects, Mathematics and Computers in Simulation, 79(3), 2008,763–813.
  50. [50] A. Horton, A. Wittek, G.R. Joldes, and K. Miller, A mesh-less total Lagrangian explicit dynamics algorithm for surgicalsimulation, International Journal for Numerical Methods inBiomedical Engineering, 26(8), 2010, 977–998.
  51. [51] G.R. Joldes, A. Wittek, and K. Miller, An adaptive dynamicrelaxation method for solving nonlinear finite element problems:Application to brain shift estimation, International Journal forNumerical Methods in Biomedical Engineering, 27(2), 2011,173–185.
  52. [52] G.R. Joldes, A. Wittek, and K. Miller, Stable time stepestimates for mesh-free particle methods, International Journalfor Numerical Methods in Biomedical Engineering, 91(4), 2012,450–456.
  53. [53] K. Miller, G.R. Joldes, D. Lance, and A. Wittek, Total La-grangian explicit dynamics finite element algorithm for computing soft tissue deformation, Communications in NumericalMethods in Engineering, 23(2), 2007, 121–134.
  54. [54] J. Xia, G.R. Joldes, M. Karol, and A. Wittek, 3D algorithmfor simulation of soft tissue cutting Models, Algorithms andImplementation, in A. Wittek, K. Miller, and M.F. PoulNielsen (eds.), Computational Biomechanics for Medicine,vol. 6 (New York: Springer, 2013), 49–62.
  55. [55] S.W. Attaway, M.W. Heinstein, and J.W. Swegle, Couplingof smoothed particle hydrodynamics with the finite elementmethod, Nuclear Engineering and Design, 150(2–3), 1994,199–205.
  56. [56] W. Wu and P.A. Heng, A hybrid condensed finite elementmodel with GPU acceleration for interactive 3D soft tissuecutting, Computer Animation and Virtual Worlds, 15(3–4),2004, 219–227.
  57. [57] X.Q. Shao, Z. Zhou, and W. Wu, A hybrid deformation modelfor virtual cutting, 2010 IEEE International Symposium onMultimedia, Taichung, Taiwan, 2011, 234–241.
  58. [58] J. Zhou, Researches on cutting simulation based on hybridmodel in the virtual surgery system, Master’s Thesis, ShanghaiJiaotong University, Shang Hai, China, 2012.
  59. [59] J. Peng, L. Li, and S. Andrew, Hybrid surgery cutting usingsnapping algorithm, volume deformation and haptic interac-tion, Journal of Man, Machine and Technology, 2(1), 2013,35–46.
  60. [60] J.J. Pan, J.X. Bai, X. Zhao, et al., Real time haptic manipulation and cutting of hybrid soft tissue models by extendedposition-based dynamic, Computer Animation and VirtualWorlds, 26(3–4), 2015, 321–335.
  61. [61] T. Kim and D.L. James, Physics-based character skinningusing multi domain subspace deformations, IEEE Transac-tions on Visualization and Computer Graphics, 18(8), 2012,1228–1240.
  62. [62] J. Barbie and Y.L. Zhao, Real-time large deformationsubstructuring, ACM Transactions on Graphics, 30(4),2011, 91.
  63. [63] Y. Yang, W.W. Xu, X.H. Gao, et al., Boundary-aware multi-domain subspace deformation, IEEE Transactions on Visual-ization and Computer Graphics, 19(10), 2013, 1633–1645.
  64. [64] J. Bosman, C. Duriez, and S. Cotin, Connective tissues simulation on GPU, 10th Workshop on Virtual Reality Interactionand Physical Simulation, Lille, France, 2013, 116–125.
  65. [65] C. Yang, S. Li, L.L. Wang, et al., Real-time physical deformation and cutting of heterogeneous objects via hybrid couplingof meshless approach and finite element method, ComputerAnimation and Virtual Worlds, 25(3), 2014, 421–433.
  66. [66] T. Belytschko and T. Black, Elastic crack growth in finiteelements with minimal remeshing, International Journal ofNumerical Methods in Engineering, 45(5), 1999, 601–620.
  67. [67] T. Belytschko, R. Gracie, and G. Ventura, A review ofthe extended/generalized finite element methods for materialmodeling, Modeling and Simulation in Materials Science andEngineering, 17(4), 2009, 1–24.
  68. [68] L.M. Vigneron, M.P. Duflot, P.A. Robe, et al., 2D XFEM-based modeling of retraction and successive resections forpreoperative image update, Computer Aided Surgery, 14(1–3),2009, 1–20.
  69. [69] L.M. Vigneron, R.C. Boman, J.P. Ponthot, et al., EnhancedFEM-based modeling of brain shift deformation in image-guided neurosurgery, Journal of Computational and AppliedMathematics, 234(7), 2010, 2046–2053.
  70. [70] L.M. Vigneron, S.K. Warfield, P.A. Robe, and J.G. Verly, 3DXFEM based modeling of retraction for preoperative imageupdate, Computer Aided Surgery, 16(3), 2011, 121–134.
  71. [71] P. Li, W. Wang, Z. Song, Y. An, and C. Zhang, A frameworkfor correcting brain retraction based on an extend finite elementmethod using a laser range scanner, International Journal ofComputer Assisted Radiology and Surgery, 9(4), 2014, 669–681.
  72. [72] L. Jerabkova and T. Kuhlen, Stable cutting of deformableobjects in virtual environments using XFEM, IEEE ComputerGraphics and Applications, 29(2), 2009, 61–71.
  73. [73] N. Schoch, S. Stefan, S. Speidel, et al., Simulation of surgical cutting of soft tissue using the extended finite elementmethod, Dec. 2, 2013).
  74. [74] C. Paulus, S. Suwelack, N. Schoch, et al., Simulation ofcomplex cuts in soft tissue with the extended finite elementmethod, Dec. 16, 2014].
  75. [75] F. Faure, C. Duriez, H. Delingette, J. Allard, et al., Sofa:A multi-model framework for interactive physical simula-tion, soft tissue biomechanical modeling for computer assistedsurgery, 11, 2012, 283–321.
  76. [76] M.B. Gong, D. Liu, and X.N. Yuan, The training system ofvascular interventional surgical robot based on Chai3D, IEEEInternational Conference on Mechatronics and Automation,2014, Tianjin, China, 600–605.
  77. [77] F.L. Stazi, E. Budyn, J. Chessa, and T. Belytschko, Anextended finite method with higher order elements for curvedcracks, Computational Mechanics, 31(1), 2003, 38–48.
  78. [78] P. Laborde, J. Pommier, Y. Renard, and M. Salsun, High-order extended finite element method for cracked domains,International Journal for Numerical Methods in Engineering,64(3), 2005, 354–381.
  79. [79] N. Song and C.W. Zhou, Accuracy study of crack tip field inextended finite element method, Chinese Journal of Compu-tational Mechanics, 26(4), 2009, 544–547.
  80. [80] T.P. Fries, A corrected XFEM approximation without problemsin blending elements, International Journal for NumericalMethods in Engineering, 75(5), 2008, 503–532.
  81. [81] K.W. Cheng and T.P. Fries, Higher-order XFEM for curvedstrong and weak discontinuities, International Journal forNumerical Methods in Engineering, 82(5), 564–590.
  82. [82] J.L. Chen, N. Zhan, and X.C. Zhang, Numerical study on theaccuracy of crack tip field by extended finite element method,Chinese Journal of Computational Mechanics, 31(4), 2014,425–430.
  83. [83] M. Rincon-Nigro, N.V. Navkar, N.V. Tsekos, and Z.G. Deng,GPU-accelerated interactive visualization and planning of neurosurgical interventions, IEEE on Computer Graphics andApplications, 34(1), 2014, 22–31.
  84. [84] C.E. Etheredge, E.E. Kunst, and A.J.B. Sanders, Harnessingthe GPU for real time haptic tissue simulation, Journal ofComputer Graphics Techniques, 2(2), 2013, 28–54.
  85. [85] Y. Zou, P. X. Liu, Q. Cheng, P. Lai, and C. Li, A newdeformation model of biological tissue for surgery simula-tion, IEEE Transactions on Cybernetics, 2016, doi: 10.1109/TCYB.2016.2560938

Important Links:

Go Back