AUTOMATIC RECOGNITION OF ADHESION STATES USING AN EXTREME LEARNING MACHINE

Changfan Zhang, Xiang Cheng, Jing He, and Guangwei Liu

References

  1. [1] W. Liao, H. Chen, W. Cai, et al., A novel active adhesion control design for high speed trains without vehicle speed measurement, 33rd China Control Conference (CCC), Nanjing, China, 2014, 221–226.
  2. [2] K. Berntorp, Joint wheel-slip and vehicle-motion estimation based on inertial, GPS, and wheel-speed sensors, IEEE Transactions on Control Systems Technology, 24(3), 2016, 1020– 1027.
  3. [3] P. Pichl´ık, O. Zoubek, and J. Zdˇenek, Measuring device for measurement of train dynamic motion during wheel slip, 2014 IEEE Int. Conf. on Applied Electronics (AE), University of West Bohemia, Pilsen, Czech Republic, 2014, 247–250.
  4. [4] S. Sadr, D.A. Khaburi, and J. Rodr´ıguez, Predictive slip control for electrical trains, IEEE Transactions on Industrial Electronics, 63(6), 2016, 3446–3457.
  5. [5] C.Y. Jae, Analysis of spectrum occupancy using machine learning algorithms, IEEE Transactions on Vehicular Technology, 83(331), 2015, 577–583.
  6. [6] N. Li, X. Feng, and X. Wei, Optimized adhesion control of locomotive airbrake based on GSA-RNN, 2015 7th IEEE Int. Conf. on Intelligent Human–Machine Systems and Cybernetics (IHMSC), Hangzhou, China, 2015, 157–161.
  7. [7] G. Zhuo and B. Wang, Structure designing of BP neural network in the application of reference velocity estimation, 2014 IEEE Int. Conf. on Mechatronics and Automation, Tianjin, China, 2014, 1481–1485.
  8. [8] H. Chen, W. Cai, and Y. Song, Wheel skid prediction and antiskid control of high speed trains, 2014 IEEE Int. Conf. on Intelligent Transportation Systems (ITSC), Qingdao, China, 2014, 1209–1214.
  9. [9] A. Suebsomran, Adaptive neural network control of electromagnetic suspension system, International Journal of Robotics and Automation, 29(2), 2014, 144–154.
  10. [10] L. Tong, F. Zhang, Z.G. Hou, et al., BP-AR-based human joint angle estimation using multi-channel SEMG, International Journal of Robotics and Automation, 30(3), 2015, 227–237.
  11. [11] G.B. Huang, H. Zhou, X. Ding, et al., Extreme learning machine for regression and multiclass classification, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(2), 2012, 513–529.
  12. [12] T.T. Teo, T. Logenthiran, and W.L. Woo, Forecasting of photovoltaic power using extreme learning machine, 2015 IEEE Innovative Smart Grid Technologies-Asia (ISGT ASIA), Bangkok, Thailand, 2015, 1–6.
  13. [13] Z. Bai, G.B. Huang, D. Wang, et al., Sparse extreme learning machine for classification, IEEE Transactions on Cybernetics, 44(10), 2014, 1858–1870.
  14. [14] A. Mozaffari and N.L. Azad, Optimally pruned extreme learning machine with ensemble of regularization techniques and negative correlation penalty applied to automotive engine cold start hydrocarbon emission identification, Neurocomputing, 131, 2014, 143–156. 199
  15. [15] S. Salcedo-Sanz, C. Casanova-Mateo, A. Pastor-Sánchez, et al., Daily global solar radiation prediction based on a hybrid coral reefs optimization – extreme learning machine approach, Solar Energy, 105, 2014, 91–98.
  16. [16] T. Koseki and T. Hara, Compensation of excessive angular momentum in a re-adhesion control of an electric train, 2015 Int. Conf. Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles (ESARS), RWTH Aachen University, Aachen, Germany, 2015, 1–6.
  17. [17] Y. Yao, S. Zhao, F. Xiao, and J. Liu, The effects of wheelset driving system suspension parameters on the re-adhesion performance of locomotives, Vehicle System Dynamics, 53(12), 2015, 1935–1951.
  18. [18] G.B. Huang, Q.Y. Zhu, and C.K. Siew, Extreme learning machine: Theory and applications, Neurocomputing, 70(1), 2006, 489–501.
  19. [19] H.-J. Rong, Y.-S. Ong, A.-H. Tan, and Z. Zhu, A fast prunedextreme learning machine for classification problem, Neurocomputing, 72(1), 2008, 359–366.
  20. [20] G.B. Huang, Q.Y. Zhu, and C.K. Siew, Extreme learning machine: A new learning scheme of feed forward neural networks, Proc. 2004 IEEE Int. Joint Conf., Budapest, Hungary, 2004, 985–990.
  21. [21] N. Jianjun, X. Yang, J. Chen, and S.X. Yang, Dynamic bioinspired neural network for multi-robot formation control in unknown environments, International Journal of Robotics and Automation, 30(3), 2015. DOI:10.2316/Journal.206.2015.3. 206-4217
  22. [22] J. Zhang, F. Tian, S.X. Yang, Y. Liu, Z. Liang, and D. Wang, An intelligent and automatic control method for tobacco flue-curing based on machine learning, International Journal of Robotics and Automation, 31(6), 2016. DOI:10.2316/ Journal.206.2016.6.206-4697
  23. [23] T. Huang, P. Yang, K. Yang, and Y. Zhu, Navigation of mobile robot in unknown environment based on T–S neuro-fuzzy system, International Journal of Robotics and Automation, 30(4), 2015. DOI:10.2316/Journal.206.2015.4.206-4344
  24. [24] F. Liu and L. Fei, Time-jerk optimal planning of industrial robot trajectories, International Journal of Robotics and Automation, 31(1), 2016. DOI:10.2316/Journal.206.2016.1.206-4055
  25. [25] P. He and S. Dai, Real-time stealth corridor path planning for fleets of unmanned aerial vehicles in low-altitude penetration, International Journal of Robotics and Automation, 30(1), 2015, 60–69.
  26. [26] F. Martın, L. Moreno, M.L. Munoz, et al., Initial population size estimation for a differential-evolution-based global localization filter, International Journal of Robotics and Automation, 29(3), 2014, 245–258.
  27. [27] A. Maram, I. Chaari, A. Koubaa, et al., Global robot path planning using GA for large grid maps: Modelling, performance and experimentation, International Journal of Robotics and Automation, 31(6), 2016. DOI:10.2316/Journal.206.2016.6. 206-4602

Important Links:

Go Back