TYPE-2 FUZZY LOGIC CONTROLLER DESIGN USING A REAL-TIME PSO ALGORITHM APPLIED TO “IROBOT CREATE ROBOT

Nesrine Baklouti and Adel M. Alimi

References

  1. [1] H. Hagras, Type-2 flcs: a new generation of fuzzy controllers, IEEE Computational Intelligence Magazine, 2(1), 2007, 30–43, 2007.
  2. [2] R.I. John, P.R. Innocent, and M.R. Barnes, Neuro-fuzzy clustering of radiographic tibia image data using type 2 fuzzy sets, Information Sciences, 125(1–4), 2000, 65–82.
  3. [3] R. John and S. Lake, Type-2 fuzzy sets for modelling nursing intuition, in IFSA World Congress and 20th NAFIPS International Conf., 2001. Joint 9th, vol. 4, Vancouver, BC, Jul 2001, 1920–1925.
  4. [4] N.N. Karnik and J.M. Mendel, Applications of type-2 fuzzy logic systems to forecasting of time-series, Information Sciences, 120(1–4), 1999, 89–111.
  5. [5] Q. Liang and J. Mendel, Equalization of nonlinear time-varying channels using type-2 fuzzy adaptive filters, IEEE Transactions on Fuzzy Systems, 8(5), 2000, 551–563.
  6. [6] C. Lynch, H. Hagras, and V. Callaghan, Embedded type-2 flc for real-time speed control of marine and traction diesel engines, in 2005. FUZZ ’05. The 14th IEEE International Conf. on Fuzzy Systems, Reno, NV, May 2005, 347–352.
  7. [7] D. Wu and W. Tan, A type-2 fuzzy logic controller for the liquid-level process, in Proceedings 2004 IEEE International Conf on Fuzzy Systems, vol. 2, Budapest, Hungary, Jul 2004, 953–958.
  8. [8] S. Cherif, N. Baklouti, and A.M. Alimi, Cww: the encoding part, in Soft Computing and Pattern Recognition (SoCPaR), 2014 6th International Conf. of. Tunis, Tunisia, IEEE, Aug 11–14, 2014, 471–476.
  9. [9] S. Cherif, N. Baklouti, A.M. Alimi, and V. Snasel, Hybrid Intelligent Systems: 15th International Conference HIS 2015 on Hybrid Intelligent Systems, Seoul, South Korea, November 16–18, 2015. Cham: Springer International Publishing, 2016, ch. A Type-2 Fuzzy Concepts Lexicalized Representation by Perceptual Reasoning and Linguistic Weighted Average: A Comparative Study, 77–86.
  10. [10] N. Baklouti, A. M. Alimi, and A. Abraham, Interval type-2 beta fuzzy basis functions: Some properties and their firstorder derivatives, in Systems, Man, and Cybernetics (SMC), 2015 IEEE International Conf. on. Hong Kong, China: IEEE, Oct 9–12, 2015, pp. 2227–2232.
  11. [11] K. C. Wu, Fuzzy interval control of mobile robots, Computers and Electrical Engineering, 22(3), 1996, 211–229.
  12. [12] H. Hagras, A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots, IEEE Transactions on Fuzzy Systems, 12(4), 2004, 524–539.
  13. [13] P. Phokharatkul and S. Phaiboon, Mobile robot control using type-2 fuzzy logic system, in 2004 IEEE Conf. on Robotics, Automation and Mechatronics, vol. 1, Singapore, Dec 2004, 296–299.
  14. [14] J. Figueroa, J. Posada, J. Soriano, M. Melgarejo, and S. Rojas, A type-2 fuzzy controller for tracking mobile objects in the context of robotic soccer games, in FUZZ ’05. The 14th IEEE International Conf. on Fuzzy Systems, Reno, NV, May 2005, 359–364.
  15. [15] N. Baklouti and A.M. Alimi, Motion planning in dynamic and unknown environment using an interval type-2 tsk fuzzy logic controller, in FUZZ-IEEE 2007. IEEE International Conf. on Fuzzy Systems, London, UK, 2007, 1–6.
  16. [16] N. Baklouti and A.M. Alimi, The geometric interval type-2 fuzzy logic approach in robotic mobile issue, in FUZZ-IEEE 2009. IEEE International Conf. on Fuzzy Systems, Jeju Island, Korea, Aug 2009, 1971–1976.
  17. [17] N. Baklouti, R. John, and A.M. Alimi, Interval type-2 fuzzy logic control of mobile robots, Journal of Intelligent Learning Systems and Applications, 4(4), 2012, 291–302.
  18. [18] J.R. Castro, O. Castillo, P. Melin, and A. Rodriguez-Diaz, A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks, Information Sciences, 179(13), 2009, 2175–2193.
  19. [19] J. Mendel, Computing derivatives in interval type-2 fuzzy logic systems, Fuzzy Systems, IEEE Transactions on, 12(1), 2004, 84–98.
  20. [20] P. Seihwan and H. Lee-Kwang, A designing method for type-2 fuzzy logic systems using genetic algorithms, in IFSA World Congress and 20th NAFIPS International Conf., 2001. Joint 9th, Vancouver, BC, Jul 2001, 2567–2572.
  21. [21] H.P.H. Anh, Novel fuzzy NARX IMC control of MISO dynamic system using particle swarm optimization, International Journal of Robotics and Automation, vol. 29, no. 2, pp. 133–143, 2014.
  22. [22] A. Rafik, P. Witold, B. Guirimov, R. Aliev, U. Ilhan, M. Babagil, and S. Mammadli, Type-2 fuzzy neural networks with fuzzy clustering and differential evolution optimization, Information Sciences, 181(9), 2011, 1591–1608.
  23. [23] G.M. Mendez and M. Hernandez, Hybrid learning for interval type-2 fuzzy logic systems based on orthogonal least-squares and back-propagation methods, Information Sciences, 179(13), 2009, 2146–2157.
  24. [24] G.M. Mendez and M. Hernendez, Hybrid learning mechanism for interval a2-c1 type-2 non-singleton type-2 takagi sugeno and kang fuzzy logic systems, Information Sciences, 220(1), 2013, 149–169.
  25. [25] T. Kumbasar and H. Hagras, Big bang-big crunch optimization based interval type-2 fuzzy pid cascade controller design strategy, Information Sciences, 282, Oct 2014, 277–295.
  26. [26] E. Yesil, Interval type-2 fuzzy pid load frequency controller using big bang-big crunch optimization, Applied Soft Computing, 15, Feb 2014, 100–112.
  27. [27] O. Castillo and P. Melin, A review on the design and optimization of interval type-2 fuzzy controllers, Applied Soft Computing, 12(4), 2012, 1267–1278.
  28. [28] O. Castillo, R. Martinez-Marroquin, P. Melin, F. Valdez, and J. Soria, Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot, Information Sciences, 192(1), 2012, 19–38.
  29. [29] R. Martinez-Soto, O. Castillo, L. T. Aguilar, and P. Melin, Fuzzy logic controllers optimization using genetic algorithms and particle swarm optimization, in Proc. of the 9th Mexican international conference on artificial intelligence conference on advances in soft computing: Part II, ser. MICAI’10. Berlin, Heidelberg: Springer-Verlag, 2010, 475–486.
  30. [30] C. Wong, H. Wang, and S. Li, PSO-based motion fuzzy controller design for mobile robots, International Journal of Fuzzy Systems, 10(1), 2008, 284–292. 125
  31. [31] Z. Bingul and O. Karahan, A fuzzy logic controller tuned with pso for 2 dof robot trajectory control, Expert Systems with Applications, 38(1), 2011, 1017–1031.
  32. [32] A. Chatterjee, K. Pulasinghe, K. Watanabe, and K. Izumi, A particle-swarm-optimized fuzzy-neural network for voicecontrolled robot systems, Industrial Electronics, IEEE Transactions on, 52(6), 2006, 1478–1489.
  33. [33] S. Bouallgue, J. Haggge, M. Ayadi, and M. Benrejeb, Pid-type fuzzy logic controller tuning based on particle swarm optimization, Engineering Applications of Artificial Intelligence, 25(3), 2012, 484–493.
  34. [34] T. Kumbasar and H. Hagras, A type-2 fuzzy cascade control architecture for mobile robots, in Systems, Man, and Cybernetics (SMC), 2013 IEEE International Conf. on, Manchester, UK, Oct 2013, 3226–3231.
  35. [35] J. Mendel and R. John, Type-2 fuzzy sets made simple, IEEE Transactions on Fuzzy Systems, 10(2), 2002, 117–127.
  36. [36] N.N. Karnik and J. Mendel, Centroid of a type-2 fuzzy set, Information Sciences, 132(1–4), 2001, 195–220.
  37. [37] N. Karnik, J. Mendel, and Q. Liang, Type-2 fuzzy logic systems, IEEE Transactions on Fuzzy Systems, 7(6), 1999, 643–658.
  38. [38] R. Eberhart and J. Kennedy, A new optimizer using particle swarm theory, in Micro Machine and Human Science, 1995. MHS ’95., Proc. of the Sixth International Symposium on, Nagoya, Japan, Oct 1995, 39–43.
  39. [39] N. Baklouti, H. Lamti, K. Salhi, and A. Alimi, Pso based adaptive learning fuzzy logic controller for the irobot create robot, in Hybrid Intelligent Systems (HIS), 2013 13th International Conf. on, Gammarth, Tunisia, Dec 2013, 99–104.
  40. [40] W. Elloumi, N. Baklouti, A. Abraham, and A.M. Alimi, The multi-objective hybridization of particle swarm optimization and fuzzy ant colony optimization, Journal of Intelligent and Fuzzy Systems, 27(1), 2013, 515–525.
  41. [41] W. Elloumi, N. Baklouti, A. Abraham, and A.M. Alimi, Hybridization of fuzzy pso and fuzzy aco applied to tsp, in Hybrid Intelligent Systems (HIS), 2013 13th International Conf. on, Gammarth, Tunisia, Dec 2013, 105–110.
  42. [42] Y. Qin, D. Sun, N. Li, and Y. Cen, Path planning for mobile robot using the particle swarm optimization with mutation operator, in International Conf. on Machine Learning and Cybernetics, vol. 4, Shanghai, China, Aug 2004, 2473–2478.
  43. [43] X. Chen and Y. Li, Smooth path planning of a mobile robot using stochastic particle swarm optimization, in Mechatronics and Automation, Proc. of the 2006 IEEE International Conf. on, Luoyang, Henan, China, Jun 2006, 1722–1727.
  44. [44] L. Wang, Y. Liu, H. Deng, and Y. Xu, Obstacle-avoidance path planning for soccer robots using particle swarm optimization, in Robotics and Biomimetics, 2006. ROBIO ’06. IEEE International Conf. on, Kunming, China, Dec 2006, 1233–1238.
  45. [45] W. Liu, I.-Y. Chung, L. Liu, S. Leng, and D. A. Cartes, Real-time particle swarm optimization based current harmonic cancellation, Engineering Applications of Artificial Intelligence, 24(1), 2011, 132–141.
  46. [46] S. Hajforoosh, M. A. Masoum, and S. M. Islam, Real-time charging coordination of plug-in electric vehicles based on hybrid fuzzy discrete particle swarm optimization, Electric Power Systems Research, 128(1), 2015, 19–29.
  47. [47] h. iRobot. [Online]. Available: http://store.irobot.com/
  48. [48] N. Baklouti and A.M. Alimi, Real time pso based adaptive learning type-2 fuzzy logic controller design for the irobot create robot, in Individual and Collective Behaviors in Robotics (ICBR), 2013 International Conf. on. Sousse, Tunisia: IEEE, 2013, 15–20.
  49. [49] S. Bousnina, B. Ammar, N. Baklouti, and A. Alimi, Learning system for mobile robot detection and tracking, in Communications and Information Technology (ICCIT), 2012 International Conf. on, Hammamet, Tunisia, Jun 2012, 384–389.
  50. [50] T. Dutta, Evaluation of the kinecttm sensor for 3-d kinematic measurement in the workplace, Applied Ergonomics, 43(4), 2012, 645–649, 2012.
  51. [51] h.-w. GP2. [Online]. Available: http://sharp-world.com/ products/device/lineup/data/pdf/datasheet/gp2y0d340k-e.pdf
  52. [52] J. Borenstein and L. Feng, Measurement and correction of systematic odometry errors in mobile robots, Robotics and Automation, IEEE Transactions on, 12(6), 1996, 869–880.

Important Links:

Go Back