AN ADAPTIVE FEEDFORWARD CONTROL METHOD FOR UNDER-ACTUATED BIPEDAL WALKING ON THE COMPLIANT GROUND

Yang Wang, Jiatao Ding, and Xiaohui Xiao

References

  1. [1] T. McGeer, Passive dynamic walking, International Journal of Robotics Research, 9(2), 1990, 62–82.
  2. [2] J.W. Grizzle, C. Chevallereau, R.W. Sinnet, and A.D. Ames, Models, feedback control, and open problems of 3D bipedal robotic walking, Automatica, 50(8), 2014, 1955–1988.
  3. [3] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, Efficient bipedal robots based on passive-dynamic walkers, Science, 307(5712), 2005, 1082–1085.
  4. [4] C. Chevallereau, A. Gabriel, Y. Aoustin, F. Plestan, E. Westervelt, C.C. De Wit, and J. Grizzle, Rabbit: A testbed for advanced control theory, IEEE Control Systems Magazine, 23(5), 2003, 57–79.
  5. [5] A. Ramezani and J.W. Grizzle, ATRIAS 2.0, a new 3-D bipedal roboticwalker and runner, Proc. International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, 2012, 467–474.
  6. [6] H. Dai, A. Valenzuela, and R. Tedrake, Whole-body motion planning with centroidal dynamics and full kinematics, Proc. IEEE-RAS International Conference on Humanoid Robots, 2014, 295–302.
  7. [7] J. Grizzle, J. Hurst, B. Morris, H.-W. Park, and K. Sreenath, MABEL, a new robotic bipedal walker and runner, Proc. American Control Conference, 2009, 2030–2036.
  8. [8] S.N. Yadukumar, M. Pasupuleti, and A.D. Ames, Humaninspired underactuated bipedal robotic walking with AMBER on flat-ground, up-slope and uneven terrain, Proc. IEEE/RSJ International Conf. Intelligent Robots and Systems, 2012, 2478–2483.
  9. [9] B. Tondu and N. Bardou, A new interpretation of mori’s uncanny valley for future humanoid robots, International Journal of Robotics & Automation, 26(3), 2011, 1.
  10. [10] W. Stronge, R. James, and B. Ravani, Oblique impact with friction and tangential compliance, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 359(1789), 2001, 2447–2465.
  11. [11] Y.-T. Wang, V. Kumar, and J. Abel, Dynamics of rigid bodies undergoing multiple frictional contacts, Proc. IEEE Int. Conf. Robotics and Automation, 1992, 2764–2769.
  12. [12] F. Plestan, J.W. Grizzle, E.R. Westervelt, and G. Abba, Stable walking of a 7-dof biped robot, IEEE Transactions on Robotics & Automation, 19(4), 2003, 653–668.
  13. [13] E.R. Westervelt, J.W. Grizzle, C. Chevallereau, J.H. Choi, and B. Morris, Feedback control of dynamic bipedal robot locomotion (Boca Raton: CRC Press, 2007).
  14. [14] K. Sreenath, H.W. Park, I. Poulakakis, and J.W. Grizzle, A compliant hybrid zero dynamics controller for stable, efficient and fast bipedal walking on MABEL, International Journal of Robotics Research, 30(9), 2011, 1170–1193.
  15. [15] K. Byl and R. Tedrake, Approximate optimal control of the compass gait on rough terrain, Proc. IEEE International Conf. Robotics and Automation, 2008, 1258–1263.
  16. [16] K. Byl and R. Tedrake, Metastable walking machines, International Journal of Robotics Research, 28(8), 2009, 1040–1064.
  17. [17] I.R. Manchester, U. Mettin, F. Iida, and R. Tedrake, Stable dynamic walking over uneven terrain, International Journal of Robotics Research, 70(2011), 2011, 265–279.
  18. [18] I.R. Manchester, M.M. Tobenkin, M. Levashov and R. Tedrake, Regions of attraction for hybrid limit cycles of walking robots, In Proc. IFAC World Congress, 2011, 5801–5806.
  19. [19] Dai, Hongkai, and R. Tedrake, Optimizing robust limit cycles for legged locomotion on unknown terrain, Proc. 51st Annu. IEEE Conf. Decision and Control, 2012, 1207–1213.
  20. [20] H. Dai and R. Tedrake, L2-gain optimization for robust bipedal walking on unknown terrain, Proc. IEEE International Conf. Robotics and Automation, 2013, 3116–3123.
  21. [21] Y. Hurmuzlu and D.B. Marghitu, Rigid body collisions of planar kinematic chain with multiple contact points, International Journal of Robotics Research, 13(1), 1994, 82–92.
  22. [22] T. Yang, E.R. Westervelt, A. Serrani, and J.P. Schmiedeler, A framework for the control of stable aperiodic walking in underactuated planar bipeds, Autonomous Robots, 27(3), 2009, 277–290.
  23. [23] J. Schröder-Schetelig, P. Manoonpong, and F. Wörgötter, Using efference copy and a forward internal model for adaptive biped walking, Autonomous Robots, 29(3–4), 2010, 357–366.
  24. [24] T. Geng, Online regulation of the walking speed of a planar limit cycle walker via model predictive control, IEEE Transactions on Industrial Electronics, 61(5), 2014, 2326–2333.
  25. [25] D.G.E. Hobbelen and M. Wisse, Controlling the walking speed in limit cycle walking, International Journal of Robotics Research, 27(9), 2008, 989–1005. 76
  26. [26] D.W. Marhefka and D.E. Orin, Simulation of contact using a nonlinear damping model, Proc. IEEE International Conf. Robotics and Automation, 1996, 1662–1668.
  27. [27] P.S. Freeman and D.E. Orin, Efficient dynamic simulation of a quadruped using a decoupled tree-structure approach, International Journal of Robotics Research, 10(6), 1991, 619–627.
  28. [28] D.E. Stewart and J.C. Trinkle, An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and coulomb friction, International Journal for Numerical Methods in Engineering, 39(15), 1996, 2673–2691.
  29. [29] W.J. Stronge, Rigid body collisions with friction, Proc. the Royal Society of London A: Mathematical, Physical and Engineering Science, 431(1881), 2000, 169–181.
  30. [30] C. Chevallereau, J.W. Grizzle, and C.-L. Shih, Asymptotically stable walking of a five-link underactuated 3-D bipedal robot, IEEE Transactions on robotics, 25(1), 2009, 37–50.
  31. [31] J.W. Grizzle, G. Abba, and F. Plestan, Asymptotically stable walking for biped robots: Analysis via systems with impulse effects, IEEE Transactions on Automatic Control, 446(1), 2001, 51–64.
  32. [32] Y. Wang, J. Ding, and X. Xiao, Periodic stability for 2-D biped dynamic walking on compliant ground, International Conf. Intelligent Robotics and Applications, 2015, 369–380.

Important Links:

Go Back