A FAST HIERARCHICAL MRF SONAR IMAGE SEGMENTATION ALGORITHM

Lei Wang, Xiu-Fen Ye, Gaobo Wang, and Lin Wang

References

  1. [1] T.K. Horiuchi and C.R. Etienn, A time-series novelty detec-tion chip for sonar, International Journal of Robotics andAutomation, 19(4), 2004, 171–177.
  2. [2] S.J. Lee, D.W. Cho, and J.H. Lim, Effective localization ofmobile robots using a sonar sensor ring, International Journalof Robotics and Automation, 25(3), 2010, 186–194.
  3. [3] H. Cho, S.C. Yu, et al., Real-time sonar image enhancementfor AUV-based acoustic vision, Ocean Engineering, 104(6),2015, 568–579.
  4. [4] D.V. Rio, E. Coiras, J. Groen, et al., Automatic target recog-nition in synthetic aperture sonar images based on geometrical53feature extraction, Journal on Advances in Signal Processing,2009(1), 2009, 12–21.
  5. [5] A.S. Lewis, R.L. Tutwiler, and J.P. Stitt, An autonomousapproach to split-and-merge processing of side-scan sonar im-ages, International Journal of Robotics and Automation, 17(2),2002, 93–99.
  6. [6] A.H. Jabbari, G. Oriolo, and H. Bolandi, An adaptive schemefor image-based visual servoing of an underactuated UAV,International Journal of Robotics and Automation, 29(1), 2014,92–104.
  7. [7] B. Du and L. Zhang, Random-selection-based anomaly detectorfor hyperspectral imagery, IEEE Transactions on Geoscienceand Remote Sensing, 49(5), 2011, 1578–1589.
  8. [8] J.P. Hsiao, S.S. Yeh, and P.L. Hsu, Target position estimationusing multi-vision system implemented on distributed mobilerobots, International Journal of Robotics and Automation,28(2), 2013, 154–169.
  9. [9] Q. Shi, B. Du, and L. Zhang, Spatial coherence based batch-mode active learning for remote sensing images classifica-tion, IEEE Transactions on Image Processing, 24(7), 2015,2037–2050.
  10. [10] M. Lianantonakis and Y.R. Petillot, Sidescan sonar segmen-tation using texture descriptors and active contours, OceanicEngineering, 32(6), 2007, 744–752.
  11. [11] S. Reed, Y. Petillot, and J. Bell, An automatic approach to thedetection and extraction of mine features in side scan sonar,Ocean Engineering, 28(6), 2003, 90–104.
  12. [12] G.Y. Liu, Y.J. Pang, et al., Sonar image segmentation using thelevel set method without reinitialization, Advanced MaterialsResearch, 981(1), 2014, 368–371.
  13. [13] S.H. Park, S. Lee, et al., Hierarchical MRF of globally consistentlocalized classifiers for 3D medical image segmentation, PatternRecognition, 46(9), 2013, 2408–2419.
  14. [14] M. Mignotte, J. Meunier, and J.C. Tardif, Endocardial bound-ary estimation and tracking in echocardiographic images us-ing deformable templates and Markov random fields. PatternAnalysis and Applications, 4(4), 2001, 256–271.
  15. [15] M. Mignotte, C. Collet, P. Perez, et al., Sonar image segmen-tation using an unsupervised hierarchical MRF model, IEEETransactions on Image Processing, 9(7), 2000, 1216–1231.
  16. [16] S. Reed, Y. Petillot, and J. Bell, An automatic approach to thedetection and extraction of mine features in sidescan sonar,Oceanic Engineering, 28(1), 2003, 90–104.
  17. [17] X.F. Ye, Z.H. Zhang, X.L. Peter, and H.L. Guan, Sonar imagesegmentation based on GMRF and level set models, OceanEngineering, 37(10), 2010, 891–901.
  18. [18] J.M. Laferte, P. Perez, and F. Heitz, Discrete Markov imagemodeling and inference on the quadtree, IEEE Transactionson Image Processing, 9(3), 2000, 390–404.
  19. [19] C. Collet, P. Thourel, P. Perez, et al., Hierarchical MRFmodeling for sonar picture segmentation, IEEE Conference onImage Processing, 3(1), 1996, 979–982.
  20. [20] J.H. Xue and D.M. Titterington, T-tests, F-tests and Otsu’smethods for image thresholding, IEEE Transactions on ImageProcessing, 20(8), 2011, 2392–2396.

Important Links:

Go Back