LINEAR TIME-VARYING FEEDBACK LAW FOR VEHICLES WITH ACKERMANN STEERING

Suruz Miah, Peter A. Farkas, Wail Gueaieb, Hicham Chaoui, and Mohammad Anwar Hossain

References

  1. [1] R.W. Brockett, Asymptotic stability and feedback stabilization, Differential Geometric Control Theory, in R.W. Brockett, R.S. Millman and H.J. Sussmann (eds.), (Boston: Birkhauser, 1983), 181–191.
  2. [2] N.U. Ahmed, Dynamic systems and control with applications (NJ: World Scientific, 2006).
  3. [3] L. Ssebazza and Y.-J. Pan, Dgps-based localization and path following approach for outdoor wheeled mobile robots, International Journal of Robotics and Automation, 30(1), 2015, 13–25.
  4. [4] J. Kim and W. Chung, Efficient placement of beacons for localization of mobile robots considering the positional uncertainty distributions, International Journal of Robotics and Automation, 30(2), 2015, 119–127.
  5. [5] H. Yamaguchi, A distributed smooth time-varying feedback control law for multiple nonholonomic mobile robots to make group formations, Transactions of the Society of Instrument and Control Engineers, 39(12), 2003, 1108–1116.
  6. [6] F. Rosales-Hernandez, M. Velasco-Villa, B. d. M.-C. Rafael Castro-Linares, and M.A. Hernndez-Perez, Synchronization strategy for differentially driven mobile robots: Discrete-time approach, International Journal of Robotics and Automation, 30(1), 2015, 50–59.
  7. [7] A. Ailon and I. Zohar, Control strategies for driving a group of nonholonomic kinematic mobile robots in formation along a time-parameterized path, IEEE/ASME Transactions on Mechatronics, 17(2), 2012, 326–336.
  8. [8] Q. Cui, X. Li, X. Wang, and M. Zhang, Backstepping control design on the dynamics of the omni-directional mobile robot, Applied Mechanics and Materials, 203, 2012, 51–56.
  9. [9] D. Chwa, Tracking control of differential-drive wheeled mobile robots using a backstepping-like feedback linearization, IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 40(6), 2010, 1285–1295.
  10. [10] S. Park and S. Hashimoto, Autonomous mobile robot navigation using passive RFID in indoor environment, IEEE Transactions on Industrial Electronics, 56(7), 2009, 2366–2373.
  11. [11] F.-L. Lian, Y.-C. Lin, C.-T. Kuo, and J.-H. Jean, Rate and quality control with embedded coding for mobile robot with visual patrol, IEEE Systems Journal, 6(3), 2012, 368–377.
  12. [12] D. Chwa, Sliding-mode tracking control of nonholonomic wheeled mobile robots in polar coordinates, IEEE Transactions on Control Systems Technology, 12(4), 2004, 637–644.
  13. [13] C.-L. Hwang and N.-W. Chang, Fuzzy decentralized slidingmode control of a car-like mobile robot in distributed sensornetwork spaces, IEEE Transactions on Fuzzy Systems, 16(1), 2008, 97–109.
  14. [14] M. Rubagotti, M. Della Vedova, and A. Ferrara, Time-optimal sliding-mode control of a mobile robot in a dynamic environment, IET Control Theory & Applications, 5(16), 2011, 1916–1924.
  15. [15] E.J. Rodriguez-Seda, C. Tang, M.W. Spong, and D.M. Stipanovic, Trajectory tracking with collision avoidance for nonholonomic vehicles with acceleration constraints and limited sensing, International Journal of Control, 33(12), 2014, 1569–1592.
  16. [16] Z. Huaguang, A novel infinite-time optimal tracking control scheme for a class of discrete-time nonlinear systems via the greedy hdp iteration algorithm, IEEE Transactions on System, Man, and Cybernetics, Part B–Cybernetics, 38(4), 2008, 937–942. 38
  17. [17] Z. Huaguang, C. Lili, Z. Xin, and L. Yanhong, Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive dynamic programming method, IEEE Transactions on Neural Networks, 22(12), 2011, 2226–2236.
  18. [18] Z. Huaguang, C. Lili, and L. Yanhong, Near-optimal control for nonzero-sum differential games of continuous-time nonlinear systems using single-network adp, IEEE Transactions on Cybernetics, 43(1), 2013, 206–216.
  19. [19] F. ur Rehman, Steering control of nonholonomic systems with drift: The extended nonholonomic double integrator example, Nonlinear Analysis: Theory, Methods & Applications, 62(8), 2005, 1498–1515, Hybrid Systems and Applications.
  20. [20] P. Setlur, J. Wagner, D. Dawson, and D. Braganza, A trajectory tracking steer-by-wire control system for ground vehicles, IEEE Transactions on Vehicular Technology, 55(1), 2006, 76–85.
  21. [21] H. Chen, M.-M. Ma, H. Wang, Z.-Y. Liu, and Z.-X. Cai, “Moving horizon H∞ tracking control of wheeled mobile robots with actuator saturation, IEEE Transactions on Control Systems Technology, 17(2), 2000, 449–457.
  22. [22] D. Gu and H. Hu, Receding horizon tracking control of wheeled mobile robots, IEEE Transactions on Control Systems Technology, 14(4), 2006, 743–749.
  23. [23] K.B. Kim and B.K. Kim, Minimum-time trajectory for threewheeled omnidirectional mobile robots following a boundedcurvature path with a referenced heading profile, IEEE Transactions on Robotics, 27(4), 2011, 800–808.
  24. [24] R. Gonzalez, M. Fiacchini, T. Alamo, J. Guzman, and F. Rodriguez, “Online robust tube-based mpc for time-varying systems: A practical approach, International Journal of Control, 84(6), 2011, 1157–1170.
  25. [25] Z. Li, H. Xiao, C. Yang, and Y. Zhao, Model predictive control of nonholonomic chained systems using general projection neural networks optimization, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(10), 2015, 1313–1321.
  26. [26] Z. Li, C. Yang, C.-Y. Su, J. Deng, and W. Zhang, Vision-based model predictive control for steering of a nonholonomic mobile robot, IEEE Transactions on Control Systems Technology, 24(2), 2016, 553–564.
  27. [27] Z. Li, J. Deng, R. Lu, Y. Xu, J. Bai, and C.-Y. Su, Trajectorytracking control of mobile robot systems incorporating neuraldynamic optimized model predictive approach, IEEE Transactions on Systems, Man, and Cybernetics: Systems, (99), 2015, accepted for publication.
  28. [28] K.-C. Cao and Y.-P. Tian, A time-varying cascaded design for trajectory tracking control of non-holonomic systems, International Journal of Control, 80(3), 2007, 416–429.
  29. [29] A.P. Aguiar and J.P. Hespanha, Trajectory-tracking and path-following of underactuated autonomous vehicles with parametric modeling uncertainty, IEEE Transactions on Automatic Control, 52(8), 2007, 1362–1379.
  30. [30] B.S. Park, S.J. Yoo, J.B. Park, and Y.H. Choi, A simple adaptive control approach for trajectory tracking of electrically driven nonholonomic mobile robots, IEEE Transactions on Control Systems Technology, 18(5), 2010, 1199–1206.
  31. [31] M.H. Amoozgar, S.H. Sadati, and K. Alipour, Trajectory tracking of wheeled mobile robots using a kinematical fuzzy controller, International Journal of Control, 27(1), 2012, 49–59.
  32. [32] M. Aicardi, G. Casalino, A. Bicchi, and A. Balestrino, Closed loop steering of unicycle like vehicles via lyapunov techniques, IEEE Robotics Automation Magazine, 2(1), 1995, 27–35.
  33. [33] J.-B. Pomet, Explicit design of time-varying stabilizing control laws for a class of controllable systems without drift, Systems & Control Letters, 18(2), 1992, 147–158.
  34. [34] Z. Cao, Y. Zhao, and S. Wang, Trajectory tracking and point stabilization of noholonomic mobile robot, in IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Oct 2010, 1328–1333.
  35. [35] P. Morin and C. Samson, Control of nonholonomic mobile robots based on the transverse function approach, IEEE Transactions on Robotics, 25(5), Oct 2009, 1058–1073.
  36. [36] N.U. Ahmed and M.S. Miah, Optimal feedback control law for a class of partially observed uncertain dynamic systems: A min-max problem, Dynamic Systems and Applications, 20(1), 2011, 149–167.
  37. [37] M.S. Miah and W. Gueaieb, Optimal time–varying p–controller for a class of uncertain nonlinear systems, International Journal of Control, Automation and Systems, 12(4), 2014, 722–732.
  38. [38] —, Mobile robot trajectory tracking using noisy rss measurements: An rfid approach, ISA Transactions: The Journal of Automation, Elsevier, 53(2), 2014, 433–443.
  39. [39] —, Rfid-based mobile robot trajectory tracking and point stabilization through on-line neighboring optimal control, Journal of Intelligent and Robotic Systems, 78(3–4), 2015, 377–399.
  40. [40] J. Broderick, D. Tilbury, and E. Atkins, Supervisory traction control for a slipping ugv, in American Control Conference (ACC), 2013, Jun 2013, 4350–4355.
  41. [41] A.D. Luca, G. Oriolo, and C. Samson, Feedback control of a nonholonomic car-like robot, in J.-P. Laumond (ed.), Robot Motion Planning and Control, ser. Lecture Notes in Control and Information Sciences (Springer, Berlin Heidelberg: Springer, 2000), vol. 229, ch. 4, 170–253.

Important Links:

Go Back