FORMATION CONTROL AND OBSTACLE AVOIDANCE OF COOPERATIVE WHEELED MOBILE ROBOTS

Adel Abbaspour, S. Ali A. Moosavian, and Khalil Alipour

References

  1. [1] W.W. Whitacre and M. Campbell, Cooperative estimation using mobile sensor nodes in the presence of communication loss, AIAA Journal of Aerospace Information Systems, 10, 2013, 114–130.
  2. [2] F. Fahimi, Autonomous robots, modeling, path planning, and control (Berlin: Springer Science Business Media, LLC, 2009).
  3. [3] S. Monteiro and E. Bicho, Attractor dynamics approach to formation control: Theory and application, Autonomous Robots, 29, 2010, 331–355.
  4. [4] T. Dierks, B. Brenner, and S. Jagannathan, Discrete-time optimal control of nonholonomic mobile robot formations using linearly parameterized neural networks, International Journal of Robotics and Automation, 26(1), 2011, 76–85.
  5. [5] M.H. Amoozgar, K. Alipour, and S.H. Sadati, A fuzzy logic-based formation controller for wheeled mobile robots, Journal of Industrial Robot, 38(3), 2011, 269–281.
  6. [6] R.C. Arkin, Behavior-based robotics (London: MIT Press, 1998).
  7. [7] K.-H. Tan and M.A. Lewis, Virtual structures for high-precision cooperative mobile robot control, Autonomous Robots, 4, 1997, 387–403.
  8. [8] K. Do and J. Pan, Nonlinear formation control of unicycle-type mobile robots, Robotics and Autonomous Systems, 55(3), 2007, 191–204.
  9. [9] B.J. Young, R.W. Beard, and J.M. Kelsey, A control scheme for improving multi-vehicle formation maneuvers, American Control Conference – ACC, 2, 2001, 704–709.
  10. [10] A. Sadowskaa, T. van den Broekb, H. Huijbertsa, N. van de Wouwc, D. Kosti´c, and H. Nijmeijerc, A virtual structure approach to formation control of unicycle mobile robots using mutual coupling, International Journal of Control, 84(11), 2011, 1886–1902.
  11. [11] J. Wang, X. Wu, and Z. Xu, Potential-based obstacle avoidance in formation control, Journal of Control Theory and Applications, 6(3), 2008, 311–316.
  12. [12] T.-T. Yang, Z.-Y. Liu, H. Chen, and R. Pei, Formation control and obstacle avoidance for multiple mobile robots, Acta Automatica Sinica, 34(5), 2008, 588–593.
  13. [13] A. Abbaspour, K. Alipour, and S.A.A. Moosavian, Finding near-optimal formation of cooperative wheeled mobile robots in payload transportation, Proc. 20th Annual Int. Conf. on Mechanical Engineering, Shiraz, Iran, ISME 2012.
  14. [14] S.A.A. Moosavian and A. Pourreza, Heavy object manipulation by a hybrid serial–parallel mobile robot, International Journal of Robotics and Automation, 25(2), 2010, 109–120.
  15. [15] A. Abbaspour, H.Z. Jafari, M.A.A. Hemmat, and K. Alipour, Redundancy resolution for singularity avoidance of wheeled mobile manipulators, ASME 2014 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2014, pp. V04AT04A036–V04AT04A036.
  16. [16] A. Abbaspour, S.A.A. Moosavian, and K. Alipour, A virtual structure-based approach to formation control of cooperative wheeled mobile robots, Proc. 1st RSI/ISM Int. Conf. on Robotics and Mechatronics, IEEE, ICRoM 2013, Sharif University, Tehran, Iran, 2013.
  17. [17] S.S. Ge and Y.J. Cui, New potential functions for mobile robot path planning, IEEE Transactions on Robotics and Automation, 16(5), 2000.
  18. [18] J.J. Craig, Introduction to robotics: Mechanics and control, 3rd ed. (Boston, MA: Addison-Wesley, 2005).
  19. [19] J.J. Slotine and W. Li, Applied nonlinear control (Englewood Cliff, NJ: Prentice Hall, 1991).

Important Links:

Go Back