ESSENTIAL-MATRIX-BASED VISUAL SERVOING OF MOBILE ROBOTS WITHOUT SHORT BASELINE DEGENERATION

Baoquan Li, Yongchun Fang, and Xuebo Zhang

References

  1. [1] N. Nath, D. Braganza, D.M. Dawson, and T. Burg, Range identification for perspective vision systems: A position-based approach, International Journal of Robotics and Automation, 26(2), 2011, 182–189.
  2. [2] G. Hu, N. Gans, N. Fitz-Coy, and W. Dixon, Adaptive homography-based visual servo tracking control via a quaternion formulation, IEEE Transactions on Control System Technology, 18(1), 2010, 128–135.
  3. [3] N.R. Gans, G. Hu, K. Nagarajan, and W. Dixon, Keeping multiple moving targets in the field of view of a mobile camera, IEEE Transactions on Robotics, 27(4), 2011, 822–828.
  4. [4] A. Cherubini and F. Chaumette, Visual navigation of a mobile robot with laser-based collision avoidance, International Journal of Robotics Research, 32(2), 2013, 189–205.
  5. [5] M.D. Berkemeier and L. Ma, Visual servoing an omnidirectional mobile robot to parking lot lines1, International Journal of Robotics and Automation, 29(1), 2014, 67–80.
  6. [6] Z. Li, S.S. Ge, M. Adams, and W.S. Wijesoma, Robust adaptive control of uncertain force/motion constrained nonholonomic mobile manipulators, Automatica, 44(3), 2008, 776–784.
  7. [7] M. Yue, X. Wei, and Z. Li, Adaptive sliding mode control for two-wheeled inverted pendulum vehicle based on zero dynamics theory, Nonlinear Dynamics, 76(1), 2014, 459–471.
  8. [8] J. Chen and D.M. Dawson, Monocular camera visual servo control of wheeled mobile robots, International Journal of Robotics and Automation, 26(1), 2011, 26–34.
  9. [9] P. Salaris, L. Pallottino, and A. Bicchi, Shortest paths for finned, winged, legged, and wheeled vehicles with side-looking sensors, International Journal of Robotics Research, 31(8), 2012, 997–1017.
  10. [10] J.-H., Jean and F.-L. Lian, Robust visual servo control of a mobile robot for object tracking using shape parameters, IEEE Transactions Control System Technology, 20(6), 2012, 1461–1472.
  11. [11] Y. Fang, W.E. Dixon, D.M. Dawson, and J. Chen, An exponential class of visual servoing controllers in the presence of uncertain camera calibration, International Journal of Robotics and Automation, 21(4), 2006, 247–255.
  12. [12] F. Chaumette and S. Hutchinson, Visual servo control part II: Advanced approaches, IEEE Robotics and Automation Magazin, 14(2), 2007, 109–118.
  13. [13] Y. Fang, W.E. Dixon, D.M. Dawson, and P. Chawda, Homography-based visual servo regulation of mobile robots, IEEE Transactions on System, Man and Cybernetics-Part B, 35(5), 2005, 1041–1050.
  14. [14] R. Basri, E. Rivlin, and I. Shimshoni, Visual homing: Surfing on the epipoles, International Journal of Computer Vision, 33(2), 1999, 117–137.
  15. [15] O. Faugeras and F. Lustman, Motion and structure from motion in a piecewise planar environment, International Journal of Pattern Recognition and Artificial Intelligence, 2(3), 1988, 485–508.
  16. [16] X. Zhang, Y. Fang, and X. Liu, Motion-estimation-based visual servoing of nonholonomic mobile robots, IEEE Transactions on Robotics, 27(6), 2011, 1167–1175.
  17. [17] G.L. Mariottini, S. Scheggi, F. Morbidi, and D. Prattichizzo, Planar mirrors for image-based robot localization and 3-D reconstruction, Mechatronics, 22(4), 201, 398–409.
  18. [18] B. Li, Y. Fang, and X. Zhang, Uncalibrated visual servoing of nonholonomic mobile robots, Proc. IEEE/RSJ International Conf. on Intelligent Robots and Systems, Tokyo, Japan, 2013, 584–589.
  19. [19] L. Valgaerts, A. Bruhn, M. Mainberger, and J. Welckert, Dense versus sparse approaches for estimating the fundamental matrix, International Journal of Computer Vision, 96(2), 2012, 212–234.
  20. [20] G. Chesi and T. Shen, Conferring robustness to path-planning for image-based control, IEEE Trans. Control System Technology, 20(4), 2012, 950–959.
  21. [21] G. L´opez-Nicolás and C. Sagüés, Vision-based exponential stabilization of mobile robots, Autonomous Robots, 30(3), 2011, 293–306.
  22. [22] G. L´opez-Nicolás, C. Sagüés, J.J. Guerrero, D. Kragic, and P. Jensfelt, Switching visual control based on epipoles for mobile robots, Robotics and Autonomous Systems, 56(7), 2008, 592–603.
  23. [23] G. Chesi, Estimation of the camera pose from image point correspondences through the essential matrix and convex optimization, Proc. IEEE International Conf. on Robotics and Automation, Kobe, Japan, 2009, 35–40.
  24. [24] L. Puig, P. Sturm, and J.J. Guerrero, Hybrid homographies and fundamental matrices mixing uncalibrated omnidirectional and conventional cameras, Machine Vision and Applications, 24(4), 2013, 721–738.
  25. [25] M.E. Fathy, A.S. Hussein, and M.F. Tolba, Fundamental matrix estimation: A study of error criteria, Pattern Recognition Letters, 32(2), 2011, 383–391.
  26. [26] G.L. Mariottini, G. Oriolo, and D. Prattichizzo, Image-based visual servoing for nonholonomic mobile robots using epipolar geometry, IEEE Transactions on Robotics, 23(1), 2007, 87–100.
  27. [27] H.M. Becerra, G. L´opez-Nicolás, and C. Sagüés, A slidingmode-control law for mobile robots based on epipolar visual servoing from three views, IEEE Transactions on Robotics, 27(1), 2011, 175–183.
  28. [28] C. Wang, Z. Liang and Y. Liu, Dynamic feedback robust regulation of nonholonomic mobile robots, Proc. IEEE International Conf. on Decision and Control, 2009, 4384–4389.
  29. [29] G. L´opez-Nicolás, N.R. Gans, S. Bhattacharya, C. Sagüés, J.J. Guerrero, and S. Hutchinson, Homography-based control scheme for mobile robots with nonholonomic and field-ofview constraints, IEEE Transactions on System, Man and Cybernetics-Part B, 40(4), 2010, 1115–1127.
  30. [30] Y. Fang, X, Liu, and X. Zhang, Adaptive active visual servoing of nonholonomic mobile robots, IEEE Transactions on Industrial Electronics, 59(1), 2012, 486–497.
  31. [31] H.M. Becerra, G. L´opez-Nicolás, and C. Sagüés, Omnidirectional visual control of mobile robots based on the 1D trifocal tensor, Robotics and Autonomous Systems, 58(6), 2010, 796–808.
  32. [32] G. L´opez-Nicolás, J.J. Guerrero, and C. Sagüés, Visual control through the trifocal tensor for nonholonomic robots, Robotics and Autonomous Systems, 58(2), 2010, 216–226.
  33. [33] A.D. Luca, G. Oriolo, and P.R. Giordano, Feature depth observation for image-based visual servoing: Theory and experiments, International Journal of Robotics Research, 27(10), 2008, 1093–1116.
  34. [34] J.J. Craig, Introduction to robotics: mechanics and control, 3rd ed. (NJ: Prentice-Hall, 2005).
  35. [35] R. Hartley & A. Zisserman, Multiple view geometry in computer vision, 2nd ed. (UK: Cambridge University Press, 2004).

Important Links:

Go Back