ADAPTIVE CONTROL STRATEGIES FOR QUADRUPED ROBOT ON UNPERCEIVED SLOPED TERRAIN

Huixiang Xie, Jianzhong Shang, and Mojtaba Ahmadi

References

  1. [1] R.B. McGhee, Finite state control of quadruped locomotion, Simulation, 9(3), 1967, 135–140.
  2. [2] R.B. McGhee, and A.A. Frank, On the stability properties of quadruped creeping gaits, Mathematical Biosciences, 3, 1968, 331–351.
  3. [3] S. Hirose, A study of design and control of a quadruped walking vehicle, The International Journal of Robotics Research, 3(2), 1984, 113–133.
  4. [4] H. Tsukagoshi, S. Hirose, and K. Yoneda, Maneuvering operations of a quadruped walking robot on a slope, Advanced Robotics, 11(4), 1997, 359–375.
  5. [5] X. Chen, K. Watanabe, K. Kiguchi, and K. Izumi, A real-time kinematics on the translational crawl motion of a quadruped robot, Journal of Intelligent and Robotic Systems, 29(2), 2000, 111–131.
  6. [6] J. Estremera and P.G. de Santos, Generating continuous free crab gaits for quadruped robots on irregular terrain, IEEE Transactions on Robotics, 21(6), 2005, 1067–1076.
  7. [7] D. Pongas, M. Mistry, and S. Schaal, A robust quadruped walking gait for traversing rough terrain, 2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 2007, 1474–1479.
  8. [8] J. Buchli, M. Kalakrishnan, M. Mistry, P. Pastor, et al., Compliant quadruped locomotion over rough terrain, The 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, 2009, 814–820.
  9. [9] J. Pippine, D. Hackett, and A. Watson, An overview of the defense advanced research projects agency’s learning locomotion program, The International Journal of Robotics Research, 30(2), 2011, 141–144.
  10. [10] J.R. Rebula, P.D. Neuhaus, B.V. Bonnlander, M.J. Johnson, et al., A controller for the littledog quadruped walking on rough terrain, IEEE International Conference on Robotics and Automation, Roma, Italy, 2007, 1467–1473.
  11. [11] J.Z. Kolter and A.Y. Ng, The Stanford LittleDog: A learning and rapid replanning approach to quadruped locomotion, The International Journal of Robotics Research, 30(2), 2011, 150–174.
  12. [12] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, et al., Learning, planning, and control for quadruped locomotion over challenging terrain, The International Journal of Robotics Research, 30(2), 2011, 236–258.
  13. [13] M.H. Raibert, Legged robots that balance (Cambridge, MA, MIT Press, 1986).
  14. [14] M. Buehler, R. Playter, and M. Raibert, Robots step outside, Int. Symp. Adaptive Motion of Animals and Machines (AMAM), Ilmenau, Germany, 2005, 1–4.
  15. [15] M. Raibert, K. Blankespoor, G. Nelson, and R. Playter, Bigdog, the rough-terrain quadruped robot, Proc. 17th World Congress, The International Federation of Automatic Control, Seoul, Korea, 2008, 10823–10825.
  16. [16] J. Estremera and K.J. Waldron, Thrust control, stabilization and energetics of a quadruped running robot, The International Journal of Robotics Research, 27(10), 2008, 1135–1151.
  17. [17] I. Poulakakis, J.A. Smith, and M. Buehler, Modeling and experiments of untethered quadrupedal running with a bounding gait: The Scout II robot, The International Journal of Robotics Research, 24(4), 2005, 239–256.
  18. [18] I. Havoutis, C. Semini, J. Buchli, and D.G. Caldwell, Quadrupedal trotting with active compliance, 2013 IEEE International Conf. on Mechatronics (ICM), Vicenza, Italy, 2013, 610–616.
  19. [19] Y. Fukuoka, H. Kimura, and A.H. Cohen, Adaptive dynamic walking of a quadruped robot on irregular terrain based on biological concepts, The International Journal of Robotics Research, 22(3–4), 2003, 187–202.
  20. [20] H. Kimura, Y. Fukuoka, and A.H. Cohen, Adaptive dynamic walking of a quadruped robot on natural ground based on biological concepts, The International Journal of Robotics Research, 26(5), 2007, 475–490.
  21. [21] A. Spröwitz, A. Tuleu, M. Vespignani, M. Ajallooeian, et al., Towards dynamic trot gait locomotion: Design, control, and experiments with Cheetah-cub, a compliant quadruped robot, The International Journal of Robotics Research, 32(8), 2013, 933–951.
  22. [22] M. Ajallooeian, S. Pouya, A. Sproewitz, and A.J. Ijspeert, Central pattern generators augmented with virtual model control for quadruped rough terrain locomotion, 2013 IEEE Int. Conf. on Robotics and Automation (ICRA), Karlsruhe, Germany, 2013, 3321–3328.
  23. [23] J. Pratt, P. Dilworth, and G. Pratt, Virtual model control of a bipedal walking robot, Proc. 1997 IEEE Int. Conf. on Robotics and Automation, Albuquerque, NM, 1997, 193–198. 373
  24. [24] J. Pratt, Virtual model control: An intuitive approach for bipedal locomotion, The International Journal of Robotics Research, 20(2), 2001, 129–143.
  25. [25] C.-M. Chew and G. A. Pratt, Dynamic bipedal walking assisted by learning, Robotica, 20(05), 2002, 477–491.
  26. [26] J. Pratt, T. Koolen, T.d. Boer, J. Rebula, et al., Capturabilitybased analysis and control of legged locomotion, Part 2: Application to M2V2, a lower-body humanoid, The International Journal of Robotics Research, 31(10), 2012, 1117–1133.
  27. [27] C.-M. Chew, J. Pratt, and G. Pratt, Blind walking of a planar bipedal robot on sloped terrain, Proc. IEEE Int. Conf. on Robotics and Automation, Detroit, MI, 1999, 381–386.
  28. [28] G.W. Hiebert, M.A. Gorassini, W. Jiang, A. Prochazka, et al., Corrective responses to loss of ground support during walking. II. Comparison of intact and chronic spinal cats, Journal of Neurophysiology, 71(2), 1994, 611–622.
  29. [29] S. Hirose, H. Tsukagoshi, and K. Yoneda, Normalized energy stability margin and its contour of walking vehicles on rough terrain, Proc. 2001 IEEE Int. Conf. on Robotics and Automation, Seoul, Korea, 2001, 181–186.
  30. [30] A. Konno, K. Ogasawara, Y. Hwang, E. Inohira, et al., An adaptive gait for quadruped robots to walk on a slope, Intelligent Robots and Systems, 2003 (IROS 2003), Las Vegas, NV, 2003, 589–594.
  31. [31] C. Liu, Q. Chen, and G. Wang, Adaptive walking control of quadruped robots based on central pattern generator (CPG) and reflex, Journal of Control Theory and Applications, 11(3), 2013, 386–392.
  32. [32] M. Azad and R. Featherstone, Modeling the contact between a rolling sphere and a compliant ground plane, Proc. Australasian Conf. on Robotics and Automation, 2010 (ACRA 2010), Brisbane, Australia, 1–3 December, 2010.

Important Links:

Go Back