GALLOPING IN AN UNDERACTUATED QUADRUPEDAL ROBOT

James Andrew Smith

References

  1. [1] J.A. Golden and Y.F. Zheng, Gait synthesis for the SD-2 biped robot to climb stairs, International Journal of Robotics and Automation, 5 (4), 1990, 149–159.
  2. [2] J. Bares and D. Wettergreen, Dante II: Technical description, results and lessons learned, International Journal of Robotics Research, 18(7), 1999, 621–649.
  3. [3] K. Automn, M. Buehler, M. Cutkosky, R.S. Fearing, R.J. Full, D. Goldman, R. Groff, W. Provancher, A.A. Rizzi, U. Saranli, A. Saunders, and D.E. Koditschek, Robotics in scansorial environments, in Douglas W. Gage Grant R. Gerhart, Charles M. Shoemaker (eds), Proceedings of SPIE, 5804, 2005, 291–302.
  4. [4] A. Seyfarth, H. Geyer, and H. Herr, Swing-leg retraction: A simple control model for stable running, Journal of Experimental Biology, 206(15), 2003, 2547–2555.
  5. [5] R.J. Full and D.E. Koditschek, Templates and anchors: Neuromechanical hypotheses of legged locomotion on land, Journal of Experimental Biology, 202, 1999, 3325–3332.
  6. [6] S. Hirose, Experimental robotics VII, chapter Super mechano-system: new perspective for versatile robotic system (Springer-Verlag, Berlin, 2001), 281–289.
  7. [7] M. Murphy, A. Saunders, C. Moreira, A. Rizzi, and M. Raibert, The littledog robot, The International Journal of Robotics Research, 30(2), 2011, 145–149.
  8. [8] M.H. Raibert, Legged robots that balance (MIT Press, Cambridge, MA, 1986).
  9. [9] Q. Guo, C.J.B. Macnab, and J.K. Pieper, Robust control of a rigid articulated hopper, International Journal of Robotics and Automation, 27(1), 2012, 1–14.
  10. [10] I. Poulakakis, J.A. Smith, and M. Buehler, Modeling and experiments of untethered quadrupedal running with a bounding gait: The Scout II Robot, International Journal of Robotics Research, 24, 2005, 239–256.
  11. [11] J.A. Smith, I. Poulakakis, M. Trentini, and I. Sharf, Bounding with active wheels and liftoff angle velocity adjustment, The International Journal of Robotics Research, 29(4), 2009, 414–427.
  12. [12] F. Iida, G.J. Gomez, and R. Pfeifer, Exploiting body dynamics for controlling a running quadruped robot, Proc. 12th Int. Conf. on Advanced Robotics (ICAR05), Seattle, WA, July 2005, 229–235.
  13. [13] D.F. Hoyt and C.R. Taylor, Gait and the energetics of locomotion in horses, Nature, 292, 1981, 239–240.
  14. [14] M. Hildebrand, Analysis of asymmetrical gaits, Journal of Mammalogy, 58(2), May 1977, 131–156.
  15. [15] H.M. Herr and T.A McMahon, A galloping horse model, The International Journal of Robotics Research, 20(1), 2001, 26–37.
  16. [16] D.W. Marhefka and D.E. Orin, Fuzzy control of quadrupedal running, Proc. IEEE Int. Conf. on Robotics and Automation, San Francisco, CA, April 2000, 3063–3069.
  17. [17] T.A. McMahon, The role of compliance in mammalian running gaits, Journal of Experimental Biology, 115, 1985, 263–282.
  18. [18] L.R. Palmer and D.E. Orin, 3D control of a high-speed quadruped trot, Industrial Robot, 33(4), 2006, 298–302.
  19. [19] P. Nanua, Dynamics of a galloping quadruped, PhD thesis, Ohio State University, Columbus, OH, 1992.
  20. [20] D.P. Krasny, Evolving dynamic maneuvers in a quadruped robot, PhD thesis, Ohio State University, Columbus, OH, 2005.
  21. [21] I. Poulakakis, J.A. Smith, and M. Buehler, On the dynamics of bounding and extensions towards the half-bound and the gallop gaits, Proc. 2nd Int. Symp. on Adaptive Motion of Animals and Machines (AMAM), Kyoto, Japan, March 2003, 453–458.
  22. [22] J.A. Smith and I. Poulakakis, Rotary gallop in the untethered quadrupedal robot Scout II, Proc. 2004 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (IROS), Sendai, Japan, October 2004, 2556–2561.
  23. [23] J.A. Smith, Galloping, bounding and wheeled-leg modes of locomotion on underactuated quadrupedal robots, PhD thesis, McGill University, Montreal, Quebec, Canada, November 2006.
  24. [24] R. Ringrose, Self-stabilizing running, PhD thesis, MIT, 1996.
  25. [25] J.P. Schmiedeler and K.J. Waldron, The mechanics of quadrupedal galloping and the future of legged vehicles, The International Journal of Robotics Research, 18(12), December 1999, 1224–1234.
  26. [26] D.W. Marhefka, D.E. Orin, J.P. Schmiedeler, and K.J. Waldron, Intelligent control of quadruped gallops. IEEE/ ASME Transactions on Mechatronics, 8(4), December 2003, 446–456.
  27. [27] R. Ringrose, Self-stabilizing running, Proc. 1997 IEEE Int. Conf. on Robotics & Automation, Albuquerque, NM, 1997, 487–493.
  28. [28] D.P. Krasny and D.E. Orin, Evolution of dynamic maneuvers in a 3d galloping quadruped robot, IEEE Int. Conf. on Robotics and Automation (ICRA), Orlando, USA, May 2006.
  29. [29] H. Herr, A model of mammalian quadrupedal running, PhD thesis, Harvard University, Cambridge, MA, January 1998.
  30. [30] J.A. Smith, I. Sharf, and M. Trentini, PAW: A hybrid wheeled-leg robot, Proc. 2006 Int. Conf. on Robotics and Automation, Orlando, FL, May 2006, 4043–4048.
  31. [31] J.A. Smith, M. Trentini, and I. Sharf, Bounding gait in a hybrid wheeled-leg robot, Proc. 2006 Int. Conf. on Intelligent Robots and Systems (IROS), Beijing, China, October 2006, 5750–5755.
  32. [32] D. McMordie, Towards pronking with a hexapod robot, Master’s thesis, McGill University, Montreal, Canada, July 2002.
  33. [33] Anonymous, SilMU01 (TM) MEMS inertial measurement unit. Technical report, BAE Systems, Plymouth, UK, 2003.
  34. [34] J. Angeles, Fundamentals of robotic mechanical systems – theory, methods, and algorithms second edition (Springer-Verlag, 2002).
  35. [35] E.F. Moore, Gedanken-experiments on sequential machines, Automata Studies, Annals of Mathematical Studies, 34, 1956, 129–153.
  36. [36] D.P. Krasny and D.E. Orin, Evolution of a 3d gallop in a quadrupedal model with biological characteristics, Journal of Intelligent and Robotic Systems, 60, 2010, 59–82.
  37. [37] K.H. Hunt and F.R.E. Crossley, Coefficient of restitution interpreted as damping in vibroimpact, Transactions of the ASME: Journal of Applied Mechanics, 42 (2), 1975, 440–445.
  38. [38] D.W. Marhefka and D.E. Orin, A compliant contact model with nonlinear damping for simulation of robotic systems, IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Humans, 29(6), 1999, 566–572.
  39. [39] S. Faik and H. Witteman, Modeling of impact dynamics: A literature survey, Proc. 2000 Int. ADAMS User Conference, Orlando, FL, 2000.
  40. [40] Y. Zhang and I. Sharf, Compliant force modelling for impact analysis, Proc. DETC’04 ASME 2004, Salt Lake City, Utah, September 2004, 1–10.
  41. [41] S. Lunzman, D. Kennedy, and S. Miller, Physical modelling of mechanical friction in Simulink, 2008.
  42. [42] P. Holmes, R.J. Full, D.E. Koditschek, and D. Guckenheimer, Dynamics of legged locomotion: Models, analyses, and challenges, SIAM Review, 48(2), 2006, 207–304.
  43. [43] M. Raibert, BigDog: The rough-terrain robot, Field Robotics Webcast, URL: http://fieldrobotics.org/fr25/webcast/video/ 05_fr25_raibert.flv, Oct. 2008. (Last viewed: Dec. 2012).

Important Links:

Go Back