ROBUST MODEL PREDICTIVE CONTROL USING CONSTRAINT RELAXATION FOR FAULT TOLERANCE

Mariana S.M. Cavalca, Roberto K.H. Galvão, and Takashi Yoneyamaa

References

  1. [1] M. Sedraoui, Application of the multivariable predictive control on a distillation column using the optimization methods, Control and Intelligent Systems, 36(2), 2008, 111–118.
  2. [2] H.S. Barbosa, R.K.H. Galvao, and T. Yoneyama, Model predictive control of linear systems subject to actuator degradation, Control and Intelligent Systems, 40(4), 2012, 212–219.
  3. [3] D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M. Scokaert, Constrained model predictive control: Stability and optimality, Automatica, 36, 2000, 789–814.
  4. [4] J.M. Maciejowski, Predictive control with constraints (Harlow: Prentice Hall, 2002).
  5. [5] P.J. Campo and M. Morari, Robust model predictive cotrol, Proc. American Control Conf., Minneapolis, MN, 1987, 1021–1026.
  6. [6] J.C. Allwright and G.C. Papavasiliou, On linear programming and robust model-predictive control using impulse-responses, Systems and Control Letters, 18, 1992, 159–164.
  7. [7] Z.Q. Zheng and M. Morari, Robust stability of constrained model predictive control, Proc. American Control Conf., San Francisco, CA, 1993, 379–383.
  8. [8] M.V. Kothare, V. Balakrishnan, and M. Morari, Robust constrained model predictive control using linear matrix inequalities, Automatica, 32(10), 1996, 1361–1379.
  9. [9] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix inequalities in system and control theory (Philadelphia: SIAM, 1994).
  10. [10] F.A. Cuzzola, J.C. Geromel, and M. Morari, An improved approach for constrained robust model predictive control, Automatica, 38, 2002, 1183–1189.
  11. [11] W.J. Mao, Robust stabilization of uncertain time-varying discrete systems and comments on “an improved approach for constrained robust model predictive control , Automatica, 39, 2003, 1109–1112.
  12. [12] N. Wada, K. Saito, and M. Saeki, Model predictive control for linear parameter varying systems using parameter dependent Lyapunov function, IEEE Transactions on Circuits and Systems II: Express Briefs, 53, 2006, 1446–1450.
  13. [13] B. Ding, Y. Xi, M.T. Cychowski, and T. O’Mahony, A synthesis approach for output feedback robust constrained model predictive control, Automatica, 44, 2008, 258–264.
  14. [14] Z. Wan and M.V. Kothare, A framework for design of scheduled output feedback model predictive control, Journal of Process Control, 18(3–4), 2008, 391–398.
  15. [15] D. Li, Y. Xi, and G. Furong, Synthesis of dynamic output feedback RMPC with saturated inputs. Automatica, 49, 2013, 949–954.
  16. [16] J. Schuurmans and J.A. Rossiter, Robust predictive control using tight sets of predicted states, IEE Proc.: Control Theory and Applications, 147(1), 2000, 13–18.
  17. [17] G. Franze, D. Famularo, E. Garone, and A. Casavola, Dilated model predictive control strategy for linear parameter-varying systems with a time-varying terminal set, IET Control Theory and Applications, 3(1), 2009, 110–120.
  18. [18] X. Liu, S. Feng, and M. Ma, Robust MPC for the constrained system with polytopic uncertainty, International Journal of Systems Science, 43(2), 2012, 248–258.
  19. [19] Y.Y. Cao and Z. Lin, Min-max MPC algorithm for LPV systems subject to input saturation, IEE Proc.: Control Theory and Applications, 152(3), 2005, 266–272.
  20. [20] H. Huang, D. Li, Z. Lin, and Y. Xi, An improved robust model predictive control design in the presence of actuator saturation, Automatica, 47, 2011, 861–864.
  21. [21] F.Q. Rossi and R.K.H. Galvao, Robust predictive control of water level in an experimental pilot plant with uncertain input delay, Mathematical Problems in Engineering, Article ID 189456, 2014, 10 pages.
  22. [22] F.Q. Rossi, R. Waschburger, and R.K.H. Galvao, Determination of the domain of attraction and regions of guaranteed cost for robust model predictive controllers based on linear matrix inequalities, Proc. UKACC International Conf. on Control, Cardiff, UK, 2012, 982–987.
  23. [23] M.S.M. Cavalca, Reconfigurable predictive control for accommodation of faults (in Portuguese), Ph.D. Thesis, Instituto Tecnol´ogico de Aeronáutica, São José dos Campos, SP, Brazil, 2011.
  24. [24] M.M. Kale and A.J. Chipperfield, Robust and stabilized MPC formulations for fault tolerant and reconfigurable flight control, Proc. IEEE International Symposium on Intelligent Control, Taipei, Taiwan, 2004, 222–227.
  25. [25] Z. Wan and M.V. Kothare, Robust output feedback model predictive control using off-line linear matrix inequalities, Journal of Process Control, 12, 2002, 763–774.
  26. [26] V.T. Minh, F. Bin, and B.M. Hashim, Tracking setpoint robust model predictive control for input saturated and softened state constraints, International Journal of Control, Automation, and Systems, 9(5), 2011, 958–965.
  27. [27] Z. Wan and M.V. Kothare, Efficient scheduled stabilizing model predictive control for constrained nonlinear systems, International Journal of Robust and Nonlinear Control, 13(7), 2003, 331–346.
  28. [28] R.J.M. Afonso and R.K.H. Galvao, Infeasibility handling in constrained MPC, in T. Zheng (ed.), Frontiers of model predictive control (Rijeka, Croatia: InTech, 2012), 47–64.
  29. [29] B. Kouvaritakis, M. Cannon, A. Karas, B. Rohal-Ilkiv, and C. Belavy, Asymmetric constraints with polytopic sets in MPC with application to coupled tanks system, International Journal of Robust and Nonlinear Control, 14(4), 2004, 341–353.
  30. [30] G.F. Franklin, J.D. Powell, and M.L. Workman, Digital control of dynamic systems, 3rd ed. (Menlo Park: Addison-Wesley, 1997). 24

Important Links:

Go Back