AUTOMATIC SKELETAL BONE AGE ASSESSMENT: STATE OF THE ART AND FUTURE DIRECTIONS

Isaak Kavasidis, Carmelo Pino

References

  1. [1] G. Milner, R. Levick, and R. Kay, “Assessmentof bone age: a comparison of the greulichand pyle, and the tanner and whitehousemethods,” Clinical Radiology, vol. 37, no. 2,pp. 119 – 121, 1986. [Online]. Available:http://www.sciencedirect.com/science/article/pii/S00099260868
  2. [2] R. K. Bull, P. D. Edwards, P. M. Kemp, S. Fry,and I. A. Hughes, “Bone age assessment: a largescale comparison of the Greulich and Pyle, andTanner and Whitehouse (TW2) methods,” Arch.Dis. Child., vol. 81, pp. 172–173, Aug 1999.
  3. [3] R. Leonardi, D. Giordano, F. Maiorana, andC. Spampinato, “Automatic cephalometric anal-ysis,” Angle Orthod, vol. 78, pp. 145–151, Jan2008.
  4. [4] F. Cannavo, G. Nunnari, D. Giordano, andC. Spampinato, “Variational method for im-age denoising by distributed genetic algorithmson grid environment,” in Enabling Technolo-294gies: Infrastructure for Collaborative Enter-prises, 2006. WETICE ’06. 15th IEEE Interna-tional Workshops on, june 2006, pp. 227 –232.
  5. [5] D. J. Michael and A. C. Nelson, “HANDX: amodel-based system for automatic segmentationof bones from digital hand radiographs,” IEEETrans Med Imaging, vol. 8, pp. 64–69, 1989.
  6. [6] E. Pietka, L. Kaabi, M. L. Kuo, and H. K.Huang, “Feature extraction in carpal-bone anal-ysis,” IEEE Trans Med Imaging, vol. 12, pp. 44–49, 1993.
  7. [7] Z. Liu, J. Chen, J. Liu, and L. Yang, “Au-tomatic bone age assessment for young chil-dren from newborn to 7-year-old using carpalbones,” Bioinformatics and Biomedical Engi-neering, 2007. ICBBE 2007. The 1st Interna-tional Conference on, pp. 445 – 447.
  8. [8] H. Yan Chai, L. Khin Wee, T. Tian Swee, S. H.Salleh, and L. Yee Chia, “An Artifacts Re-moval Post-processing for Epiphyseal Region-of-interest (EROI) Localization in AutomatedBone Age Assessment (BAA),” Biomed Eng On-line, vol. 10, p. 87, Sep 2011.
  9. [9] D. Giordano, C. Spampinato, G. Scarciofalo,and R. Leonardi, “An automatic system forskeletal bone age measurement by robust pro-cessing of carpal and epiphysial/metaphysialbones,” Instrumentation and Measurement,IEEE Transactions on, vol. 59, no. 10, pp. 2539–2553, oct. 2010.
  10. [10] A. Zhang, A. Gertych, and B. J. Liu, “Au-tomatic bone age assessment for young chil-dren from newborn to 7-year-old using carpalbones,” Computerized Medical Imaging andGraphics, vol. 31, no. 4-5, pp. 299 – 310, 2007,¡ce:title¿Computer-aided Diagnosis (CAD) andImage-guided Decision Support¡/ce:title¿.
  11. [11] D. Giordano, R. Leonardi, F. Maiorana, G. Scar-ciofalo, and C. Spampinato, “Epiphysis andmetaphysis extraction and classification byadaptive thresholding and DoG filtering for au-tomated skeletal bone age analysis,” Conf ProcIEEE Eng Med Biol Soc, vol. 2007, pp. 6552–6557, 2007.
  12. [12] R. De Luis-Garcia, M. Martin-Fernandez, J. Ar-ribas, and C. Alberola-Lopez, “A fully automaticalgorithm for contour detection of bones in handradiographs using active contours,” Image Pro-cessing, 2003. ICIP 2003. Proceedings. 2003 In-ternational Conference on, vol. 3, pp. III – 421–4 vol.2, sept. 2003.
  13. [13] A. Faro, D. Giordano, and C. Spampinato, “Anautomated tool for face recognition using vi-sual attention and active shape models analysis,”Conf Proc IEEE Eng Med Biol Soc, vol. 1, pp.4848–4852, 2006.
  14. [14] H. H. Thodberg, S. Kreiborg, A. Juul, and K. D.Pedersen, “The BoneXpert method for auto-mated determination of skeletal maturity,” IEEETrans Med Imaging, vol. 28, pp. 52–66, Jan2009.
  15. [15] L. Bocchi, F. Ferrara, I. Nicoletti, and G. Valli,“An artificial neural network architecture forskeletal age assessment.” pp. 1077–1080, 2003.
  16. [16] H.-H. Lin, S.-G. Shu, Y.-H. Lin, and S.-S. Yu,“Bone age cluster assessment and feature clus-tering analysis based on phalangeal image roughsegmentation,” Pattern Recognition, vol. 45,no. 1, pp. 322 – 332, 2012.
  17. [17] C. W. Hsieh, T. L. Jong, Y. H. Chou, and C. M.Tiu, “Computerized geometric features of carpalbone for bone age estimation,” Chin. Med. J.,vol. 120, pp. 767–770, May 2007.
  18. [18] K. Somkantha, N. Theera-Umpon, andS. Auephanwiriyakul, “Bone Age Assess-ment in Young Children Using AutomaticCarpal Bone Feature Extraction and SupportVector Regression,” J Digit Imaging, Feb 2011.
  19. [19] P. Lin, F. Zhang, Y. Yang, and C. Zheng,“Carpal-bone feature extraction analysis inskeletal age assessment based on deformablemodel,” J. of Computer Science and Technology,2004.
  20. [20] D. Giordano, C. Spampinato, G. Scarciofalo,and R. Leonardi, “Automatic skeletal bone ageassessment by integrating emroi and croi pro-cessing,” Medical Measurement and Applica-tions, vol. 0, pp. 141–145, 2009.
  21. [21] A. Tristan-Vega and J. I. Arribas, “A radius andulna TW3 bone age assessment system,” IEEE295Trans Biomed Eng, vol. 55, pp. 1463–1476, May2008.
  22. [22] C.-W. Hsieh, T.-C. Liu, J.-K. Wang, T.-L. Jong, and C.-M. Tiu, “Simplified ra-dius, ulna, and short bone-age assessmentprocedure using grouped-tanner-whitehousemethod,” Pediatrics International, vol. 53,no. 4, pp. 567–575, 2011. [Online].Available: http://dx.doi.org/10.1111/j.1442-200X.2011.03378.x
  23. [23] A. Gooen, E. Hermann, G. Weber, T. Gernoth,T. Pralow, and R.-R. Grigat, “Model-based seg-mentation of pediatric and adult joints forortho-pedic measurements in digital radiographsofthelowerlimbs,” Computer Science - Re-search and Development, vol. 26, pp. 107–116,2011, 10.1007/s00450-010-0139-8. [Online].Available: http://dx.doi.org/10.1007/s00450-010-0139-8
  24. [24] A. Faro, D. Giordano, and F. Maiorana, “Miningmassive datasets by an unsupervised parallelclustering on a grid: Novel algorithms and casestudy,” Future Gener. Comput. Syst., vol. 27,pp. 711–724, June 2011. [Online]. Available:http://dx.doi.org/10.1016/j.future.2011.01.002
  25. [25] A. Crisafi, D. Giordano, and C. Spampinato,“Griplab 1.0: Grid image processing labora-tory for distributed machine vision applications,”in Workshop on Enabling Technologies: Infras-tructure for Collaborative Enterprises, 2008.WETICE ’08. IEEE 17th, june 2008, pp. 188 –191.
  26. [26] C. Spampinato, D. Giordano, R. Di Salvo,Y.-H. J. Chen-Burger, R. B. Fisher, andG. Nadarajan, “Automatic fish classificationfor underwater species behavior understanding,”in Proceedings of the first ACM interna-tional workshop on Analysis and retrieval oftracked events and motion in imagery streams,ser. ARTEMIS ’10. New York, NY, USA:ACM, 2010, pp. 45–50. [Online]. Available:http://doi.acm.org/10.1145/1877868.1877881
  27. [27] H.-J. Mentzel, C. Vilser, M. Eulenstein,T. Schwartz, S. Vogt, J. Bttcher, I. Yaniv,L. Tsoref, E. Kauf, and W. A. Kaiser,“Assessment of skeletal age at the wristin children with a new ultrasound device,”Pediatric Radiology, vol. 35, pp. 429–433,2005, 10.1007/s00247-004-1385-3. [Online].Available: http://dx.doi.org/10.1007/s00247-004-1385-3
  28. [28] A. Castriota-Scanderbeg, M. C. Sacco,L. Emberti-Gialloreti, and L. Fraracci, “Skeletalage assessment in children and young adults:comparison between a newly developed sono-graphic method and conventional methods,”Skeletal Radiology, vol. 27, pp. 271–277, 1998,10.1007/s002560050380. [Online]. Available:http://dx.doi.org/10.1007/s002560050380
  29. [29] A. Faro, D. Giordano, F. Maiorana, andC. Spampinato, “Discovering genes-diseases as-sociations from specialized literature using thegrid,” IEEE Trans Inf Technol Biomed, vol. 13,pp. 554–560, Jul 2009.
  30. [30] A. Faro, D. Giordano, and C. Spampinato,“Combining literature text mining with microar-ray data: advances for system biology model-ing,” Brief Bioinform, Jun 2011.296

Important Links:

Go Back