Sandor I. Bernad, Elena S. Bernad
[1] S. Achenbach, Current and future status on cardiaccomputed tomography imaging for diagnosis and riskstratification, Journal of Nuclear Cardiology, 12 (6),2005, 703-713. [2] F. Hornero, V. Cervera, J. Estornell, I. Rodirguez,J.A. Buendia, J.M. Esteban, J.A. Montero, Virtual VascularEndoscopy for Acute Aortic Dissection, Ann Thorac Surg.,80, 2005, 708-710. [3] I. Marsahall, S. Zhao, P. Papathanasopoulou, P.Hoskins, X. Yun Xu, MRI and CFD studies of pulsatileflow in healtly and stenosed carotid bifurcation models,Journal of Biomechanics, 37, 2004, 679-687. [4] S.A. Spicer, C.A. Taylor, Simulation Based MedicalPlanning for Cardiovascular Disease: Visualization SystemFoundations, Computer Aided Surgery, 5, 2000, 82-89. [5] S.I. Bernad, E. Bernad, T. Barbat, V. Albulescu, R.Susan-Resiga, Effects of different types of inputwaveforms in patient-specific right coronaryatherosclerosis hemodynamics analysis. Int. J. of Design &Nature and Ecodynamics, 5(2), 2010, 1-18. [6] R. Gardhagen, J. Renner, T. Lanne, M. Karlsson,Subject Specific Wall Shear Stress in the Human ThoracicAorta, WSEAS TRANSACTIONS on BIOLOGY andBIOMEDICINE, 10 (3), 2006, 609-614. [7] C.N. Yung, K.J. De Witt, S. Subramanian, A.A.Afjeh, T.G. Keith, Three-dimensional pulsatile flowthrough a bifurcation, International Journal of NumericalMethods for Heat & Fluid Flow, 7 (8), 1997, 843-862. [8] M.J. Marques, J. Koen, H.J. Spruijt, C. Boer, N.Westerhof, C.A. Visser, F.C. Visser, The diastolic flow-pressure gradient relation in coronary stenoses in humans,J. Am. Coll. Cardiol., 39, 2002, 1630-1636. [9] R. Torii, N.B. Wood, N. Hadjiloizou, A.W. Dowsey,A.R. Wright, A.D. Hughes, J. Davies, D.P. Francis, J.Mayet, G-Z. Yang, S.A.McG. Thom, X.X. Yun, Fluid-structure interaction analysis of a patient-specific rightcoronary artery with physiological velocity and pressurewaveforms. Communications in Numerical Methods inEngineering, 25, 2009, 565-580. [10] D. Zeng, E. Boutsianis, M Ammann, K. Boomsma,S. Wildermuth, D Poulikakos, A study on the Complianceof a Right Coronary Artery and Its Impact on Wall ShearStress, Journal of Biomechanical Engineering, 130, 2008,041014-1:11. [11] B.M. Johnston, P.R. Johnston, S. Corney, D.Kilpatrick, Non-Newtonian blood flow in human rightcoronary arteries: transient simulations. Journal ofBiomechanics, 39, 2005, 1116–1128. [12] C. Clark, The propagation of turbulence producedby a stenosis, J. Biomech., 113, 1980, 591–604. [13] A.M.A. Khalifa, D.P. Giddens, Characterization andevolution of poststenotic flow disturbances, J. Biomech.,14, 1981, 279–296. [14] B.M. Kim, W.H. Corcoran, Experimentalmeasurements of turbulence spectra distal to stenoses, J.Biomech., 7, 1974 335–342. [15] F. Ghalichi, X. Deng, Turbulence detection in astenosed artery bifurcation by numerical simulation ofpulsatile blood flow using the low-Reynolds numberturbulence model, Biorheology, 40, 2003, 637–654. [16] R. Mittal, S.P. Simmons, H.S. Udaykumar,Application of large-eddy simulation to the study ofpulsatile flow in a modeled arterial stenosis, J. Biomech.Engrg., 123, 2001, 325–332. [17] V.T. Rayz, S. A. Berger, D. Salomer, Transitionalflow in arterial fluid dynamics, Comput. Methods Appl.Mech. Engrg., 196, 2007, 3043–3048. [18] H.M. Loree, R.D. Kamm, C.M. Atkinson, R.T. Lee,Turbulent pressure fluctuations on surface of modelvascular stenoses, Am. J. Physiol., 261, 1991, H644–H650. [19] FLUENT 6.3 User’s Guide, Fluent Incorporated,2006. [20] R. Torii, N.B. Wood, N. Hadjiloizou, A.W.Dowsey, A.R. Wright, A.D. Hughes, J. Davies, D.P.Francis, J. Mayet, G-Z Yang, S.A. Thom, & X.X. Yun,Differences in coronary artery haemodynamics due tochanges in flow and vascular geometry after percutaneouscoronary intervention. Heart, 94, 2008, A1–A4. [21] J.A. Moore, D.A. Steiman, D.W. Holdsworth, C.R.Ethier, Accuracy of computational hemodynamics incomplex arterial geometries reconstructed from magneticresonance imaging. Ann. Biomed. Eng., 27, 1999, 32–41.515
Important Links:
Go Back