DETECTING QRS COMPLEX IN ECG USING WAVELETS AND CUBIC SPLINE INTERPOLATION

Luiz Carlos Rodrigues

References

  1. [1] Goldberger, A. L. et al. Physiobank, physiotoolkit, andphysionet: Components of a new research resource forcomplex physiologic signals. Circulation, v. 101, n. 23,p. e215–e220, 2000. Circulation Electronic Pages:http://circ.ahajournals.org/cgi/content/full/101/23/e215.Available in: http://www.physionet.org/physiobank/database/mitdb/.
  2. [2] Dupre, A.; Vieau, S.; Iaizzo, P. A. Handbook ofCardiac Anatomy,Pshysiology, and Devices. 2nd. ed.Minnneapolis, USA: Springer, 2009.
  3. [3] Chen, S.W; Chen, H.C; Chan H.L, A real-time QRSdetection method based on moving-averaging incorpo-rating with wavelet denoising Computer Methods andPrograms in Biomedicine, v. 82, n. 3, p. 187 - 195,2006.
  4. [4] Zhan F., Lina Y, QRS detection based on multiscalemathematical morphology for wearable ECG Devicesin body area networks IEEE Transactions on Biomedi-cal Circuits and Systems, v. 3, n. 4, p. 220 - 228, 2009.
  5. [5] Chen Q., Liu J,Li G., QRS wave group detection basedon B-Spline wavelet add adaptive threshold 2010 Inter-national Conference on Computer, Mecatronics, Con-trol and Eletronic Engineering (CMCE), p. 272- 275,2010.
  6. [6] CORP, M. S. . D. The Merck manual for health-care professionals. The Merck Manuals OnlineMedical Library, 2011. Available in: . Last Access: 1 fevereiro 2011.
  7. [7] Burrus, C. S.; Gopinath, R. A.; Guo, H. Introductionto Wavelets and Wavelets Tranforms - A Primer. NewJersey: Prentice Hall, Inc, 1998.
  8. [8] Mallat, S. G. A Theory for Multiresolution Sig-nal Composition: The Wavelet Representation. IEEETransactions on Pattern Analysis and Machine Intelli-gence, v. II, n. 7, p. 674–693, 1989.
  9. [9] Howard, A. S; Rorres, C. Elementary Linear Algebra -Applications Version. New Jersey: Cambridge Univer-sity Press, 2006.
  10. [10] Jane, R. and Laguna, P. and Thakor, N. V. andCaminal, P. Adaptive baseline wander removal in theECG: Comparative analysis with cubic spline tech-nique.Computers in Cardiology. Proceedings, p. 143–146, 1992.
  11. [11] Percival, D. B.; T.Walden, A. Wavelets Methods forTime Series Analysis. New Jersey: Cambridge Univer-sity Press, 2006.
  12. [12] Jansend, A.; Cour-Harbo, A. Ripples in Mathemat-ics The Discrete Wavelet Transform. New York,USA:Springer, 2001.
  13. [13] Klingfield, P. et al. Recommendations for theStandardization and Interpretation of the Electro-cardiogram: Part I: The Electrocardiogram andIts Technology: A Scientific Statement From theAmerican Heart Association Electrocardiographyand Arrhythmias Committee, Council on ClinicalCardiology; the American College of Cardiol-ogy Foundation; and the Heart Rhythm SocietyEndorsed by the International Society for Com-puterized Electrocardiology. Circulation, v. 115,n. 10, p. 1306–1324, 2007. Available in: http://circ.ahajournals.org/cgi/content/abstract/115/10/1306.
  14. [14] Pan, J.; Tompkins, W. J. A real-time qrs detection al-gorithm. IEEE Transactions on Biomedical Engineer-ing, BME-32, p. 230 – 235, 1985.
  15. [15] Donoho, D. L. De-noising by soft-thresholding. IEEETransactions on Information Theory, v. 41, n. 3, p.613–627, August 2002.
  16. [16] Rudnick, M.; Strumillo, P. A real-time adaptivewavelet transform-based qrs complex detector. In:ICANNGA (2). [S.l.: s.n.], 2007. p. 281–289.
  17. [17] Haykyn, S.; Veen, B. V. Signals and Systems. 2nd.ed. New York, NY, USA: John Wiley & Sons, Inc.,2002.ISBN 0471164747.
  18. [18] Elgendi, M. et al. A robust qrs complex detection al-gorithm using dynamic thresholds. In: Proceedings ofthe International Symposium on Computer Science andits Applications. Washington, DC, USA: IEEE Com-puter Society, 2008. p. 153–158.
  19. [19] Burrus, C. S.; Gopinath, R. A.; Guo, H. Introductionto Wavelets and Wavelets Tranforms - A Primer. NewJersey: Prentice Hall, Inc, 1998.
  20. [20] Daubechies, I. Orthonormal bases of compactly sup-ported wavelets. Communications on Pure and AppliedMathematics, v. 41, p. 909–996, 1988.
  21. [21] Addison, Paul S. Wavelet transforms and the ECG: areview. Physiological Measurement,n.5,v. 26, p. 155–199, 2005.
  22. [22] Percival, D. B.; T.Walden, A. Wavelets Methods forTime Series Analysis. New Jersey: Cambridge Univer-sity Press, 2006.
  23. [23] Gene H. Golub and Charles F. van Van Loan. MatrixComputations(Johns Hopkins Studies in MathematicalSciences) The Johns Hopkins University Press, 3rdedition, October 1996.

Important Links:

Go Back