REVERSE ENGINEERING GAIN ADAPTATION IN SENSORY SYSTEMS

Uwe Friederich, Stephen A. Billings, Mikko A. Juusola, Daniel Coca

References

  1. [1] M.H. Asyali & M. Juusola, Use of Meixner functionsin estimation of Volterra kernels of nonlinear systemswith delay, IEEE Transactions on BiomedicalEngineering, 52(2), 2005, 229-237.
  2. [2] H.B. Barlow, Possible principles underlying thetransformation of sensory messages, SensoryCommunication, 1961, 217-234.
  3. [3] G. Battle, A block spin construction of ondelettes. PartI: Lemarié functions, Communications in MathematicalPhysics, 110(4), 1987, 601-615.
  4. [4] S.A. Billings & I. J. Leontaritis, Identification ofnonlinear Systems using Parameter EstimationTechniques, IEE Conference Publication, WarwickUniversity 194, 1981, 183-187.
  5. [5] S.A. Billings & Q. M. Zhu, Nonlinear modelvalidation using correlation tests, International Journal ofControl, 60(6), 1994, 1107-1120.
  6. [6] S. Chen, S. A. Billings & W. Luo, Orthogonal least-squares methods and their application to non-linearsystem-identification, International Journal of Control,50(5), 1998, 1873-1896.
  7. [7] A.S. French, M. J. Korenberg, M. Jarvilehto, E.Kouvalainen, M. Juusola & M. Weckstrom, The dynamicnonlinear behavior of fly photoreceptors evoked by awide range of light intensities, Biophysical Journal, 65(2),1993, 832-839.
  8. [8] M. Juusola, & R. C. Hardie, Light adaptation inDrosophila photoreceptors: I. Response dynamics andsignaling efficiency at 25°C, Journal of GeneralPhysiology, 117(1), 2001, 3-25.
  9. [9] S. B. Laughlin, The role of sensory adaptation in theretina, Journal of Experimental Biology, 146, 1989 39-62.
  10. [10] P. G. Lemarié, Ondelettes à localisationexponentielle, Journal de Mathematiques Pures etAppliquees, 67 (3), 1988, 227-236.
  11. [11] I.J. Leontaritis & S. A. Billings, Input-outputparametric models for non-linear systems II: stochasticnon-linear systems, International Journal of Control,41(2),1985, 329-344.
  12. [12] Leu, J.-F., J.-C. Jang & C. Hwang, Computation ofbattle–lemarie wavelets using an FFT-based algorithm,Journal of Scientific Computing, 13(4), 1998, 485-504.
  13. [13] Pearson, R. K., Discrete-time dynamic models,(Oxford University Press, 1999).
  14. [14] Seber, G. A. F. & C. J. Wild, Computational methodsfor nonlinear least squares, (John Wiley & Sons, Inc.,2005)
  15. [15] J.H. van Hateren, A theory of maximizing sensoryinformation, Biological Cybernetics, 68(1), 1992, 23-29.
  16. [16] J.H. van Hateren, "Processing of natural time seriesof intensities by the visual system of the blowfly, VisionResearch, 37(23), 1997, 3407-3416.
  17. [17] B. Wark, B. N. Lundstrom & A. Fairhall, Sensoryadaptation." Current Opinion in Neurobiology, 17(4),2007, 423-429.
  18. [18] L. Zheng, A. Nikolaev, T. J. Wardill, C. J. O'Kane,G. G. de Polavieja & M. Juusola, Network adaptationimproves temporal representation of naturalistic stimuli inDrosophila eye: I dynamics, PLoS ONE, 4(1),2009 e4307.425

Important Links:

Go Back