COMPUTATIONAL SIMULATION OF THE MECHANOBIOLOGICAL REGULATION OF BONE REMODELING BY MEANS OF A COUPLED SYSTEMS BIOLOGY-MICROMECHANICAL APPROACH

Stefan Scheiner Faculty

References

  1. [1] J.E. Aubin. Bone stem cells. Journal of Cellular Bio-chemistry, Supplements 30/31:73–82, 1998.
  2. [2] R.B. Martin, D.B. Burr, and N.A. Sharkey. SkeletalTissue Mechanics. Springer Verlag, 1998.
  3. [3] V. Lemaire, F.L. Tobin, L.D. Greller, C.R. Cho, andL.J. Suva. Modeling of the interactions between os-teoblast and osteoclast activities in bone remodel-ing. Journal of Theoretical Biology, 229(3):293–309,2004.
  4. [4] P. Pivonka, J. Zimak, D.W. Smith, B.S. Gardiner, C.R.Dunstan, N.A. Sims, T.J. Martin, and G.R. Mundy.Model structure and control of bone remodeling: Atheoretical study. Bone, 43(2):249–263, 2008.
  5. [5] P. Pivonka, J. Zimak, D.W. Smith, B.S. Gardiner, C.R.Dunstan, N.A. Sims, T.J. Martin, and G.R. Mundy.Theoretical investigation of the role of the RANK-RANKL-OPG system in bone remodeling. Journalof Theoretical Biology, 262(2):306–316, 2010.
  6. [6] C.T. Rubin and L.E. Lanyon. Regulation of bone massby mechanical strain magnitude. Calcified Tissue In-ternational, 37(4):411–417, 1985.
  7. [7] C.H. Turner and F.M. Pavalko. Mechanotransductionand functional response of the skeleton to physicalstress: The mechanisms and mechanics of bone adap-tation. Journal of Orthopaedic Science, 3(6):346–355, 1998.
  8. [8] R.B. Martin. Toward a unifying theory of bone re-modeling. Bone, 26(1):1–6, 2000.
  9. [9] L. Geris, J. Vander Sloten, and H. Van Oosterwyck.In silico biology of bone modeling and remodeling:regeneration. Philosophical Transactions of the RoyalSociety London A, 367(1895):2031–2053, 2009.
  10. [10] L.F. Bonewald and M.L. Johnson. Osteocytes,mechanosensing and Wnt signaling. Bone,42(4):606–615, 2008.
  11. [11] C.H. Turner and A.G. Robling. Mechanisms by whichexercise improves bone strength. Journal of Bone andMineral Metabolism, 23(S1):16–22, 2005.e s662
  12. [12] J.-Y. Rho, L. Kuhn-Spearing, and P. Zioupos. Me-chanical properties and the hierarchical structure ofbone. Medical Engineering and Physics, 20(2):92–102, 1998.
  13. [13] S. Weiner and H.D. Wagner. The material bone:Structure-mechanical function relations. Annual Re-view of Materials Science, 28(1):271–298, 1998.
  14. [14] A. Zaoui. Structural Morphology and ConstitutiveBehavior of Microheterogeneous Materials, chap-ter 6, pages 291 – 347. Springer-Verlag, WienNew York, 1997. In [28].
  15. [15] A. Zaoui. Continuum micromechanics: survey. Jour-nal of Engineering Mechanics (ASCE), 128(8):808–816, 2002.
  16. [16] Ch. Hellmich and F.-J. Ulm. Micromechanicalmodel for ultra-structural stiffness of mineralized tis-sues. Journal of Engineering Mechanics (ASCE),128(8):898 – 908, 2002.
  17. [17] A. Fritsch and C. Hellmich. ‘Universal’ microstruc-tural patterns in cortical and trabecular, extracellularand extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. Journal ofTheoretical Biology, 244(4):597–620, 2007.
  18. [18] J. Vuong and C. Hellmich. Bone fibrillogenesis andmineralization: Quantitative analysis and implica-tions for tissue elasticity. Journal of Theoretical Biol-ogy, 287:115 – 130, 2011.
  19. [19] Ch. Hellmich, J.-F. Barth´el´emy, and L. Dormieux.Mineral-collagen interactions in elasticity of bone ul-trastructure - a continuum micromechanics approach.European Journal of Mechanics - A/Solids, 23(5):783– 810, 2004.
  20. [20] E. Seeman. Invited review: pathogenesis of osteo-porosis. Journal of Applied Physiology, 95(5):2142–2151, 2003.
  21. [21] D.M.L. Cooper, C.D.L. Thomas, J.G. Clement, A.L.Turinsky, C.W. Sensen, and B. Hallgr´ımson. Age-dependent change in the 3D structure of corticalporosity at the human femoral midshaft. Bone,40(4):957–965, 2007.
  22. [22] L.F. Bonewald and S.L. Dallas. Role of active andlatent transforming growth factor-β in bone forma-tion. Journal of Cellular Biochemistry, 55(3):350–357, 1994.
  23. [23] K. Janssens, P. ten Dijke, S. Janssens, andW. Van Hul. Transforming growth factor-β1 to thebone. Endocrine Reviews, 26(6):743–774, 2005.
  24. [24] L.C. Hofbauer, C.A. K¨uhne, and V. Viereck. TheOPG/RANKL/RANK system in metabolic bone dis-eases. Journal of Musculoskeletal Neuronal Interac-tions, 4(3):268–275, 2004.
  25. [25] A.G. Robling, A. Castillo, and C.H. Turner. Biome-chanical and molecular regulation of bone remod-eling. Annual Review of Biomedical Engineering,8:455–498, 2006.
  26. [26] R. Hill. Elastic properties of reinforced solids: sometheoretical principles. Journal of Mechanics andPhysics of Solids, 11(5):357–372, 1963.
  27. [28].[15] A. Zaoui. Continuum micromechanics: survey. Jour-nal of Engineering Mechanics (ASCE), 128(8):808–816, 2002.[16] Ch. Hellmich and F.-J. Ulm. Micromechanicalmodel for ultra-structural stiffness of mineralized tis-sues. Journal of Engineering Mechanics (ASCE),128(8):898 – 908, 2002.[17] A. Fritsch and C. Hellmich. ‘Universal’ microstruc-tural patterns in cortical and trabecular, extracellularand extravascular bone materials: micromechanics-based prediction of anisotropic elasticity. Journal ofTheoretical Biology, 244(4):597–620, 2007.[18] J. Vuong and C. Hellmich. Bone fibrillogenesis andmineralization: Quantitative analysis and implica-tions for tissue elasticity. Journal of Theoretical Biol-ogy, 287:115 – 130, 2011.[19] Ch. Hellmich, J.-F. Barth´el´emy, and L. Dormieux.Mineral-collagen interactions in elasticity of bone ul-trastructure - a continuum micromechanics approach.European Journal of Mechanics - A/Solids, 23(5):783– 810, 2004.[20] E. Seeman. Invited review: pathogenesis of osteo-porosis. Journal of Applied Physiology, 95(5):2142–2151, 2003.[21] D.M.L. Cooper, C.D.L. Thomas, J.G. Clement, A.L.Turinsky, C.W. Sensen, and B. Hallgr´ımson. Age-dependent change in the 3D structure of corticalporosity at the human femoral midshaft. Bone,40(4):957–965, 2007.[22] L.F. Bonewald and S.L. Dallas. Role of active andlatent transforming growth factor-β in bone forma-tion. Journal of Cellular Biochemistry, 55(3):350–357, 1994.[23] K. Janssens, P. ten Dijke, S. Janssens, andW. Van Hul. Transforming growth factor-β1 to thebone. Endocrine Reviews, 26(6):743–774, 2005.[24] L.C. Hofbauer, C.A. K¨uhne, and V. Viereck. TheOPG/RANKL/RANK system in metabolic bone dis-eases. Journal of Musculoskeletal Neuronal Interac-tions, 4(3):268–275, 2004.[25] A.G. Robling, A. Castillo, and C.H. Turner. Biome-chanical and molecular regulation of bone remod-eling. Annual Review of Biomedical Engineering,8:455–498, 2006.[26] R. Hill. Elastic properties of reinforced solids: sometheoretical principles. Journal of Mechanics andPhysics of Solids, 11(5):357–372, 1963.[27] R. Hill. Continuum micro-mechanics of elastoplasticpolycrystals. Journal of Mechanics and Physics ofSolids, 13(2):89–101, 1965.[28] P.M. Suquet. Continuum Micromechanics, volume377 of CISM Courses and Lectures. Springer Verlag,Wien New York, 1997.
  28. [29] J. Eshelby. The determination of the elastic field of anellipsoidal inclusion, and related problems. Proceed-ings of the Royal Society London, Series A, 241:376 –396, 1957.
  29. [30] N. Laws. The determination of stress and strainconcentrations at an ellipsoidal inclusion in ananisotropic material. Journal of Elasticity, 7(1):91 –97, 1977.
  30. [31] T. Mori and K. Tanaka. Average stress in matrix andaverage elastic energy of materials with misfitting in-clusions. Acta Metallurgica, 21(5):571 – 574, 1973.
  31. [32] Y. Benveniste. A new approach to the application ofMori-Tanaka’s theory in composite materials. Me-chanics of Materials, 6:147 – 157, 1987.
  32. [33] A. Fritsch, L. Dormieux, and Ch. Hellmich. Porouspolycrystals built up by uniformly and axisymmet-rically oriented needles: homogenization of elasticproperties. Comptes Rendus Mecanique, 334(3):151– 157, 2006.
  33. [34] C. Hellmich, C. Kober, and B. Erdmann.Micromechanics-based conversion of CT datainto anisotropic elasticity tensors, applied to FEsimulations of a mandible. Annals of BiomedicalEngineering, 36(1):108–122, 2008.
  34. [35] R.B. Ashman, S.C. Cowin, W.C. Van Buskirk, andJ.C. Rice. A continuous wave technique for the mea-surement of the elastic properties of cortical bone.Journal of Biomechanics, 17(5):349–361, 1984.
  35. [36] D.P. Fyhrie and D.R. Carter. A unifying principle re-lating stress to trabecular bone morphology. Journalof Orthopaedic Research, 4(3):304–317, 1986.
  36. [37] R. Huiskes, H. Weinans, H.J. Grootenboer, M. Dal-stra, B. Fudala, and T.J. Slooff. Adaptive bone-remodeling theory applied to prosthetic-design analy-sis. Journal of Biomechanics, 20(11-12):1135–1150,1987.663
  37. [38] J.M. Garcia-Aznar, J.H. Kuiper, M.J. G´omez-Benito,M. Doblar´e, and J.B. Richardson. Computationalsimulation of fracture healing: Influence of interfrag-mentary movement on the callus growth. Journal ofBiomechanics, 40(7):1467–1476, 2007.
  38. [39] E. Ozcivici, Y.K. Luu, B. Adler, Y.-X. Qin, J. Rubin,S. Judex, and C.T. Rubin. Mechanical signals as an-abolic agents in bone. Nature Reviews Rheumatology,6(1):50–59, 2010.
  39. [40] L. Vico and C. Alexandre. Microgravity and boneadaption at the tissue level. Journal of Bone and Min-eral Research, 7(S2):445–447, 1992.
  40. [41] L. Vico, P. Collet, A. Guignandon, M.-H. Lafage-Proust, T. Thomas, M. Rehailia, and C. Alexandre.Effects of long-term microgravity exposure on can-cellous and cortical weight-bearing bones of cosmo-nauts. The Lancet, 355(9215):1607–1611, 2000.

Important Links:

Go Back