MULTI-ORGAN SEGMENTATION OF CT IMAGES USING STATISTICAL REGION MERGING

Gobert Lee Flinders

References

  1. [1] M. Caon, G. Bibbo, and J. Pattison. An EGS4-ready tomographic computational model of a 14-year-old female torso for calculating organ doses fromCT examinations. Physics in Medicine and Biology,44(9):2213–2225, 1999.
  2. [2] M. Zankl and A. Wittman. The adult male voxelmodel ”golem” segmented from whole-body CT pa-tient data. Radiation and Environmental Biophysics,40:153–162, 2001.
  3. [3] M. Caon, G. Bibbo, and J. Pattison. Monte Carlocalculated effective dose to teenage girls from com-puted tomography examinations. Radiation Protec-tion Dosimetry, 90(4):445–448, 2000.
  4. [4] M. Zankl, R. Veit, G. Williams, K. Schneider,H. Fendel, N. Petoussi, and G. Drexler. The construc-205tion of computer tomographic phantoms and their ap-plication in radiology and radiation protection. Ra-diation and Environmental Biophysics, 27:153–164,1988.
  5. [5] C. Lee, J. Williams, C. Lee, and W. Bolch. The UFseries of tomographic computational phantoms of pe-diatric patients. Medical Physics, 32:3537–48, 2005.
  6. [6] T. Nagoka, S. Watanabe, K. Sakurai, E. Kunieda,S. Watanabe, M. Taki, and W. Yamanaka. Devel-opment of realistic high resolution whole-body voxelmodels of japanese adult males and females of av-erage height and weight, and application of mod-els to radio-hyphen frequency electromagnetic-fielddosimetry. Physics in Medicine and Biology, 49:1–15, 2004.
  7. [7] U. Fill, M. Zankl, N. Petoussi-Henss, M. Siebert, andD. Regulla. Adult female voxel models of differ-ent stature and photon conversion coefficients for ra-diation protection. Health Physics, 86(3):253–272,2004.
  8. [8] R. Nock and F. Nielsen. Statistical Region Merg-ing. IEEE Trans. Pattern Anal. Mach. Intell.,26(11):1452–1458, 2004.
  9. [9] Q. Wang and Z. Wang. A subjective method for im-age segmentation evaluation. In H. Zha, R. Taniguchi,and S. Maybank, editors, Proceedings of ACCV 2009,LNCS, volume 5996, pages 53–64, 2010.
  10. [10] M. Emre Celebi, Hassan A. Kingravi, Jeongkyu Lee,William Van Stoecker, Joseph M. Malters, Hitoshi Iy-atomi, Y. Alp Aslandogan, Randy Moss, and Ash-faq A. Marghoob. Fast and accurate border detectionin dermoscopy images using Statistical Region Merg-ing. In J. P. W. Pluim and J. M. Reinhardt, editors,Proceedings of SPIE: Medical Imaging 2007, volume6512, pages 65123V–1, 2007.
  11. [11] M. Zortea, S. O. Skrovseth, T. R. Schopf, H. M.Kirchesch, and F. Godtliebsen. Automatic segmenta-tion of dermoscopic images by iterative classification.International Journal of Biomedical Imaging, 2011.
  12. [12] M. Bajger, F. Ma, S. Williams, and M. Bottema.Mammographic mass detection with Statistical Re-gion Merging. In Proceedings of DICTA 2010: Dig-ital Image Computing: Techniques and Applications,pages 27–32, Sydney, Australia, 2010.
  13. [13] S. Battiato, C. Bosco, G. M. Farinella, and G. Im-poco. 3D CT segmentation for clinical evaluation ofknee prosthesis operations. In Proceedings of the Eu-rographics Italian Chapter, 2006.
  14. [14] ICRP. The 2007 recommendations of the Interna-tional Commission on Radiological Protection. An-nals of the ICRP, 103, 2007.
  15. [15] P. Jaccard. Nouvelles recherches sur la distributionflorale. Bull. Soc. Vaudoise Sci. Natl., 44:223–270,1908.
  16. [16] O. Kubassova, R. D. Boyle, and A. Radjenovic. Anovel method for quantitative evaluation of segmenta-tion outputs for dynamic contrast-enhanced MRI datain RA studies. In Proceedings of the Joint DiseaseWorkshop, 9th International Conference on MedicalImage Computing and Compter Assisted Intervention,volume 1, pages 72–79, 2006.
  17. [17] M. Sonka, V. Hlavac, and R. Boyle. Image Process-ing, Analysis, and Machine Vision. Thomson, 2008.
  18. [18] Kostas Haris, Serafim N. Efstratiadis, Nicos Maglav-eras, and Aggelos K. Katsaggelos. Hybrid imagesegmentation using watersheds and fast region merg-ing. IEEE transactions on Image Processing, 7:1684–1699, 1998.
  19. [19] J. Cousty, M. Couprie, Najman. L., and G. Bertrand.Weighted fusion graphs: Merging properties and wa-tersheds. Discrete Applied Mathematics, 156:3011–3027, 2008.
  20. [20] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: ac-tive contour models. Int. J. Comput. Vision, 1(4):321–331, 1987.
  21. [21] C. Xu and J. L. Prince. Snakes, shapes, and gradientvector flow. IEEE Transactions on Image Processing,7(3):359–369, 1998.

Important Links:

Go Back