COLLAGEN MECHANICS: ROLE OF STRUCTURAL HIERARCHY

Dinesh R. Katti, Shashindra M. Pradhan, Kalpana S. Katti

References

  1. [1] A. Bhattacharjee, M. Bansal, Collagen Structure: TheMadras Triple Helix and the Current Scenario, IUBMBLife 57, 2005, 161-172.
  2. [2] P. Fratzl, R. Weinkamer, Nature's hierarchicalmaterials, Progress in Materials Science 52, 2007, 1263-1334.
  3. [3] G. Ramachandran, G. Kartha, Structure of collagen.,Nature 176, 1955, 593-595.
  4. [4] G.N. Ramachandran, G. Kartha, Structure of collagen,Nature 174, 1954, 269-270.
  5. [5] J. Orgel, A. Miller, T. Irving, R. Fischetti, A.Hammersley, T. Wess, The in situ supermolecularstructure of type I collagen., Structure 9, 2001, 1061-1069.
  6. [6] J. Bella, M. Eaton, B. Brodsky, H. Berman, Crystaland molecular structure of a collagen-like peptide at 1.9 Aresolution., Science 266 ,1994, 75-81.
  7. [7] D.R. Katti, S.M. Pradhan, K.S. Katti, Directionaldependence of hydroxyapatite-collagen interactions onmechanics of collagen, Journal of Biomechanics 43,2010, 1723-1730.
  8. [8] D.K. Dubey, V. Tomar, Effect of changes intropocollagen residue sequence and hydroxyapatitemineral texture on the strength of ideal nanoscaletropocollagen-hydroxyapatite biomaterials, Journal ofMaterials Science-Materials in Medicine 21 ,2010, 161-171.
  9. [9] N. Almora-Barrios, N.H. de Leeuw, A DensityFunctional Theory Study of the Interaction of CollagenPeptides with Hydroxyapatite Surfaces, Langmuir 26,2010, 14535-14542.
  10. [10] C. Hellmich, J.F. Barthelemy, L. Dormieux, Mineral-collagen interactions in elasticity of bone ultrastructure - acontinuum micromechanics approach, European Journalof Mechanics a-Solids 23, 2004, 783-810.
  11. [11] A. Fritsch, C. Hellmich, L. Dormieux, Ductile slidingbetween mineral crystals followed by rupture of collagencrosslinks: Experimentally supported micromechanicalexplanation of bone strength, Journal of TheoreticalBiology 260, 2009, 230-252.
  12. [12] A.C. Lorenzo, E.R. Caffarena, Elastic properties,Young's modulus determination and structural stability ofthe tropocollagen molecule: a computational study bysteered molecular dynamics, Journal of Biomechanics 38,2005, 1527-1533.
  13. [13] A. Gautieri, S. Vesentini, F.M. Montevecchi, A.Redaelli, Mechanical properties of physiological andpathological models of collagen peptides investigated viasteered molecular dynamics simulations, Journal ofBiomechanics 41, 2008, 3073-3077.
  14. [14] A. Gautieri, M.J. Buehler, A. Redaelli, Deformationrate controls elasticity and unfolding pathway of singletropocollagen molecules, Journal of the MechanicalBehavior of Biomedical Materials 2, 2009, 130-137.
  15. [15] S. Pradhan, M., D.R. Katti, K.S. Katti, SteeredMolecular Dynamics Study of Mechanical Response ofFull Length and Short Collagen Molecules, Journal ofNanomechanics and Micromechanics 1, 2011, 104-110.
  16. [16] W. Humphrey, A. Dalke, K. Schulten, VMD: Visualmolecular dynamics, Journal of Molecular Graphics 14,1996, 33.
  17. [17] J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E.Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K.Schulten, Scalable molecular dynamics with NAMD,Journal of Computational Chemistry 26, 2005, 1781-1802.
  18. [18] S.E. Feller, Y.H. Zhang, R.W. Pastor, B.R. Brooks,Constant-pressure molecular-dynamics simulation - the655langevin piston method, Journal of Chemical Physics 103,1995, 4613-4621.
  19. [19] G.J. Martyna, D.J. Tobias, M.L. Klein, Constant-pressure molecular-dynamics algorithms, Journal ofChemical Physics 101, 1994, 4177-4189.
  20. [20] H. Sugeta, T. Miyazawa, General method forcalculating helical parameters of polymer chains frombond lengths bond angles and internal-rotation angles,Biopolymers 5 ,1967, 673.
  21. [21] M. Bansal, S. Kumar, R. Velavan, HELANAL: Aprogram to characterize helix geometry in proteins,Journal of Biomolecular Structure & Dynamics 17,2000,811-819.
  22. [22] S.M. Pradhan, D.R. Katti, K.S. Katti, HelicalHierarchy Controls Collagen Deformation, (UnderReview) ,2011.

Important Links:

Go Back