PERIODIC SOLUTIONS OF A GENERALIZED SVEIR EPIDEMIC MODEL UNDER IMPULSIVE PERIODIC VACCINATION

Raul Nistal, Manuel de la Sen, Santiago Alonso-Quesada

References

  1. [1] Xinyu Song, Yu Jiang, Huiming Wei, Analysis ofa saturation incidence SVEIRS epidemic model withpulse and two time delay, Applied Mathematics andComputation, Vol.214, 2009, 381-390.
  2. [2] McCallum et al, How should pathogen transmissionbe modeled?, Trends ecol.Evol, Vol.16(6) , 2001, 295-300.
  3. [3] M.de la Sen, S.Alonso-Quesada, A.Ibeas and R.Nistal, On the Equilibrium points, boundedness andpositivity of a SVEIRS epidemic model under con-stant constrained vaccination, Informatica, Vol.22(3),2011, 330-370.
  4. [4] Matt J.Keeling and Pejman Rohani, Modeling infec-tious Diseases in Humans and Animals (Princeton,Princeton University Press ,2008).
  5. [5] Michael Y.Li and James S.Muldowney, Global Stabil-ity for the SEIR Model in Epidemiology, Mathemati-cal Biosciences, Vol.125, 1995, 155-164.
  6. [6] Alberto d’Onofrio, Stability properties of pulse vacci-nation strategy in SEIR epidemic model, Mathemati-cal Biosciences, Vol.179,2002, 57-72.
  7. [7] Juan Zhang, Zhien Ma, Global dynamics of an SEIRepidemic model with saturating contact rate, Mathe-matical Biosciences, Vol.185,2003,15-32.
  8. [8] J.D Chapman; N.D Evans, The structural identifiabil-ity of susceptible-infective-recovered type epidemicmodels with incomplete immunity and birth-targetedvaccinations, 17th International Federation of Auto-matic Control World Congress, (IFAC),(2008) .
  9. [9] Yu Jiang, Huiming Wei, Xinyu Song, Liquan Mei,Guanhui Su, Shuizeng Qui, Global attractivity andpermanence of a delayed SVEIR epidemic modelwith pulse vaccination and Saturation Incidence, Ap-plied Mathematics and Computation, Vol.213, 2009,312-321.
  10. [10] Hong Zhang, Lansum Chen and Juan J. Nieto, A De-layed epidemic model with stage-structure for pestmanagement strategy, Nonlinear Analysis: Real ap-plications, Vol.9, 2008, 1714-1726.
  11. [11] Gouping Pang and Lansum Chen, A delayed SIRSepidemic model with pulse vaccination, Chaos, Soli-tons and Fractals, Vol.34, 2007, 1627-1635.
  12. [12] A.Kaddan, Stability analysis in a delayed SIR epi-demic model with a saturated incidence rate, Nonlin-ear Analysis: Modeling and Control, Vol.15(3), 2010, 299-306.
  13. [13] Wim Michaels, Silviu-lulian Niculescu, Stability andStabilization of Time-Delay Systems. An Eigenvalue-Based Approach (Philadelphia, Siam, 2007)

Important Links:

Go Back