PLAQUE PROGRESSION MODELING BY USING COMPUTER SIMULATION AND IMAGING DATA

Nenad Filipovic, Dalibor Nikolic, Zarko Milosevic, Milos Radovic, Igor Saveljic, Themis Exarcous, Dimitris Fotiadis, Walter Pelosi, Oberdan Parodi

References

  1. [1] P. Libby, Inflammation in atherosclerosis. Nature,2002, 868–874.
  2. [2] J. Loscalzo & A.I. Schafer, Thrombosis andHemorrhage (Third edition. Lippincott Williams &Wilkins, Philadelphia, 2003).
  3. [3] J.M. Tarbell, Mass transport in arteries and thelocalization of atherosclerosis, Annual Review ofBiomedical Engineering, 5, 2003, 79–118.
  4. [4] P. Zunino, Mathematical and numerical modeling ofmass transfer in the vascular system. (PhD thesis,Lausanne, Switzerland: EPFL, 2002).
  5. [5] A. Quarteroni, A. Veneziani, P. Zunino,Mathematical and numerical modeling of the solutedynamics in blood flow and arterial walls, SIAM Journalof Numerical Analysis, 39, 2002, 1488–1511.
  6. [6] M.R. Kaazempur-Mofrad, C.R. Ethier, Masstransport in an anatomically realistic human rightcoronary artery, Ann Biomed Eng 29, 2001, 121–127.
  7. [7] S. Wada, M. Koujiya, T. Karino, Theoretical studyof the effect of local flow disturbances on theconcentration of low-density lipoproteins at the luminalsurface of end-to-end anastomosed vessels, Med Biol EngComput 40, 2002, 576–587.
  8. [8] D. K. Stangeby, C.R. Ethier, Computational analysisof coupled blood-wall arterial LDL transport, J BiomechEng-T ASME 124, 2002, 1–8.
  9. [9] N. Sun, N.B. Wood, A.D. Hughes, S.A.M. Thom,X.Y. Xu, Fluid-wall modelling of mass transfer in anaxisymmetric stenosis: effects of shear dependenttransport properties, Ann Biomed Eng 34, 2006, 1119–1128.
  10. [10]L. Ai, K. Vafai, A coupling model for macromoleculetransport in a stenosed arterial wall, Int J. Heat Mass Tran49, 2006, 1568-1591.
  11. [11]U. Olgac, V. Kurtcuoglu, V. Poulikakos,Computational modeling of coupled blood-wall masstransport of LDL: effects of local wall shear stress, Am J.Physiol Heart Circ Physiol 294, 2008, 909-919.
  12. [12]R. Ross, Atherosclerosis: a defense mechanism goneawry Am J Pathol., 143 1993, 987 1002., , –568
  13. [13]O. Kedem, A. Katchalsky, A physical interpretationof the phenomenological coefficients of membranepermeability, The Journal of General Physiology, 45,1961, 143–179.
  14. [14]O. Kedem, A. Katchalsky, Thermodynamic analysisof the permeability of biological membranes to non-electrolytes, Biochim. Biophys. 27, 1958, 229–246.
  15. [15]M. Kojic, N. Filipovic, B. Stojanovic, N. Kojic,Computer Modeling in Bioengineering: ThеoreticalBackground, Examples and Software (John Wiley andSons, Chichester, England, 2008).
  16. [16]V. Calvez, E. Abderrhaman, N. Meunier, A. Raoult,Mathematical modelling of the atherosclerotic plaqueformation, ESAIM Proceedings, 28, 2008, 1-12.
  17. [17]N. Filipovic, M. Rosic, I. Tanaskovic, Z. MilosevicD. Nikolic, N. Zdravkovic, A. Peulic, D. Fotiadis, O.Parodi, ARTreat project: Three-dimensional NumericalSimulation of Plaque Formation and Development in theArteries, IEEE Trans Inf Technol Biomed. 2011, PMID:21937352.
  18. [18]N. Filipovic, et al, PAK-Athero, Specialized three-dimensional software for simulation of plaque formationand development inside the arteries, (University ofKragujevac, 34000 Kragujevac, Serbia, 2010).
  19. [19]N. Filipovic, S. Mijailovic, A. Tsuda, M. Kojic, 2006.An implicit algorithm within the Arbitrary Lagrangian-Eulerian formulation for solving incompressible fluidflow with large boundary motions, Comp. Meth. Appl.Mech. Eng., 195, 2006, 6347-6361.
  20. [20]C. Cheng, D. Tempel, V.R. Haperen, A. V. D. Baan,F. Grosveld, M.J.A.P. Daemen, R. Krams, D.R. CromAtherosclerotic lesion size and vulnerability aredetermined by patterns of fluid shear stress, Circulation,113, 2006, 2744-2753.

Important Links:

Go Back