MICROMECHANICS OF VISCOUS INTERFACES IN HYDRATED (BIO-)MATERIALS

Mehran Shahidi, Bernhard Pichler, Christian Hellmich

References

  1. [1] M. Shahidi, B. Pichler, C. Hellmich, Viscous in-terfaces as source for material creep: a continuummicromechanics approach, European Journal of Me-chanics - A/Solids. Submitted for review and possiblepublication in October 2012.
  2. [2] C. A. Morrow, D. E. Moore, D. A. Lockner, The ef-fect of mineral bond strength and adsorbed water onfault gouge frictional strength, Geophysical ResearchLetters 27 (6) (2000) 815–818.
  3. [3] M. Stipp, J. Tullis, H. Behrens, Effect of water onthe dislocation creep microstructure and flow stressof quartz and implications for the recrystallized grain0 1 2 3 4 500.511.522.5dimensionless time (Es t)/(aη)dimensionlessmacrostrain(EsEαz)/Σαz(1+νs),α=x,yPoisson coefficient νs = 0.0d → 0d = 0.1d = 0.2d = 0.3d = 0.4d = 0.50 1 2 3 4 500.511.522.5dimensionless time (Es t)/(aη)dimensionlessmacrostrain(EsEαz)/Σαz(1+νs),α=x,yPoisson coefficient νs = 0.286d → 0d = 0.1d = 0.2d = 0.3d = 0.4d = 0.50 1 2 3 4 500.511.522.5dimensionless time (Es t)/(aη)dimensionlessmacrostrain(EsEαz)/Σαz(1+νs),α=x,yPoisson coefficient νs = 0.5d → 0d = 0.1d = 0.2d = 0.3d = 0.4d = 0.5Figure 7. Creep test: Evolution of dimensionless macro-scopic shear strain with dimensionless timesize piezometer, Journal of Geophysical Research B:Solid Earth 111 (2006) B04201.
  4. [4] J. Tullis, R. A. Yund, Diffusion creep in feldspar ag-gregates: experimental evidence, Journal of Struc-tural Geology 13 (9) (1991) 987–1000.
  5. [5] Z. P. Baˇzant, A. B. Hauggaard, S. Baweja, F. J.Ulm, Microprestress-solidification theory for con-crete creep. I: Aging and drying effects, Journal ofEngineering Mechanics 123 (11) (1997) 1188–1194.
  6. [6] R. Alizadeh, J. J. Beaudoin, L. Raki, Viscoelastic na-ture of calcium silicate hydrate, Cement and ConcreteComposites 32 (5) (2010) 369–376.
  7. [7] A. G. Kalinichev, J. Wang, R. J. Kirkpatrick, Molecu-lar dynamics modeling of the structure, dynamics and585energetics of mineral-water interfaces: Applicationto cement materials, Cement and Concrete Research37 (3) (2007) 337–347.
  8. [8] I. Vlahini´c, J. J. Thomas, H. M. Jennings, J. E.Andrade, Transient creep effects and the lubricatingpower of water in materials ranging from paper toconcrete and kevlar, Journal of the Mechanics andPhysics of Solids 60 (7) (2012) 1350–1362.
  9. [9] M. Youssef, R. J.-M. Pellenq, B. Yildiz, Glassy natureof water in an ultraconfining disordered material: Thecase of calcium-silicate-hydrate, Journal of the Amer-ican Chemical Society 133 (8) (2011) 2499–2510.
  10. [10] Z. N´emeth, L. Hal´asz, J. P´alink´as, A. B´ota,T. Hor´anyi, Rheological behaviour of a lamellar liq-uid crystalline surfactant-water system, Colloids andSurfaces A: Physicochemical and Engineering As-pects 145 (1-3) (1998) 107–119.
  11. [11] F. Cordob´es, J. Mu˜noz, C. Gallegos, Linear viscoelas-ticity of the hexagonal liquid-crystalline phase of asurfactant non ionic/hydrocarbon/water system, Jour-nal of Colloid and Interface Science 187 (1997) 401–417.
  12. [12] L. Eberhardsteiner, C. Hellmich, S. Scheiner, Lay-ered water in crystal interfaces as source for boneviscoelasticity: arguments from a multiscale ap-proach, Computer Methods in Biomechanics andBiomedical Engineering. Available online at [DOI:10.1080/10255842.2012.670227].
  13. [13] J. C. Arnold, N. P. Venditti, Effects of environmenton the creep properties of a poly(ethylmethacrylate)based bone cement, Journal of Materials Science:Materials in Medicine 12 (8) (2001) 707–717.
  14. [14] N. Sasaki, Y. Nakayama, M. Yoshikawa, A. Enyo,Stress relaxation function of bone and bone collagen,Journal of Biomechanics 26 (12) (1993) 1369–1376.
  15. [15] T. G. Lombardo, N. Giovambattista, P. G.Debenedetti, Structural and mechanical proper-ties of glassy water in nanoscale confinement,Faraday discussions 141 (2009) 359–376.
  16. [16] J. Berghausen, J. Fuchs, W. Richtering, Rheologyand shear orientation of a nematic liquid crystallineside-group polymer with laterally attached mesogenicunits, Macromolecules 30 (24) (1997) 7574–7581.
  17. [17] W. Brostow, N. A. D’Souza, J. Kub´at, R. Maksimov,Creep and stress relaxation in a longitudinal poly-mer liquid crystal: Prediction of the temperature shiftfactor, Journal of Chemical Physics 110 (19) (1999)9706–9712.
  18. [18] R. H. Colby, L. M. Nentwich, S. R. Clingman, C. K.Ober, Defect-mediated creep of structured materials,Europhysics Letters 54 (2) (2001) 269–274.
  19. [19] W. Jezewski, W. Kuczy´nski, J. Hoffmann, Creep dy-namics of structural defects in ferroelectric liquidcrystals with chevron geometry, Physical Review B- Condensed Matter and Materials Physics 77 (2008)094101.
  20. [20] H. Manzano, S. Moeini, F. Marinelli, A. C. T.Van Duin, F.-J. Ulm, R. J. M. Pellenq, Confinedwater dissociation in microporous defective silicates:Mechanism, dipole distribution, and impact on sub-strate properties, Journal of the American ChemicalSociety 134 (4) (2012) 2208–2215.
  21. [21] B. Pichler, C. Hellmich, Estimation of influence ten-sors for eigenstressed multiphase elastic media withnonaligned inclusion phases of arbitrary ellipsoidalshape, Journal of Engineering Mechanics 136 (8)(2010) 1043–1053.
  22. [22] G. Dvorak, Y. Benveniste, On transformation strainand uniform fields in multiphase elastic media, Pro-ceedings of the Royal Society London, Series A, 437(1992) 291–310.
  23. [23] G. J. Dvorak, Transformation field analysis of inelas-tic composite materials, Proceedings of the Royal So-ciety of London A 437 (1992) 311–326.
  24. [24] V. Pens´ee, D. Kondo, L. Dormieux, Micromechani-cal analysis of anisotropic damage in brittle materi-als, Journal of Engineering Mechanics 128 (8) (2002)889–897.

Important Links:

Go Back