SOFT BIOACTIVE COATINGS BASED ON ELECTROPHORETICALLY DEPOSITED BIOACTIVE GLASS NANOPARTICLES AND POLYCAPROLACTONE

Julia E. Graubmann, Sigrid Seuß, Aldo R. Boccaccini

References

  1. [1] A. Simchi, et al., Recent progress in inorganic andcomposite coatings with bactericidal capability for orthopaedicapplications, Nanomedicine: Nanotechnology, Biology andMedicine, vol. 7, pp. 22-39, 2011.
  2. [2] Z. Zhang, et al., Low temperature electrophoreticdeposition of porous chitosan/silk fibroin composite coating fortitanium biofunctionalization, Journal of Materials Chemistry,vol. 21, pp. 7705-7713, 2011.
  3. [3] R. C. Anderson, et al., An evaluation of skeletal attachmentto LTI pyrolytic carbon, porous titanium, and carbon-coatedporous titanium implants, Clinical Orthopaedics and RelatedResearch, vol. NO. 182, pp. 242-257, 1984.
  4. [4] A. R. Boccaccini, et al., Electrophoretic deposition ofpolyetheretherketone (PEEK) and PEEK/Bioglass® coatingson NiTi shape memory alloy wires, Journal of MaterialsScience, vol. 41, pp. 8152-8159, 2006.
  5. [5] S. Seuss, et al., "Electrophoretic deposition of PEEK-TiO2composite coatings on stainless steel," vol. 507, ed. PuertoVallarta, 2012, pp. 127-133.
  6. [6] M. Cheong and I. Zhitomirsky, Electrodeposition of alginicacid and composite films, Colloids and Surfaces A:Physicochemical and Engineering Aspects, vol. 328, pp. 73-78,2008.
  7. [7] K. Grandfield and I. Zhitomirsky, Electrophoreticdeposition of composite hydroxyapatite-silica-chitosancoatings, Materials Characterization, vol. 59, pp. 61-67, 2008.
  8. [8] R. Ma, et al., Electrophoretic deposition of hyaluronic acidand composite films for biomedical applications, JOM, vol. 62,pp. 72-75, 2010.
  9. [9] X. Xiao, et al., Electrophoretic deposition of silicon-substituted hydroxyapatite/ poly(ε-caprolactone) compositecoatings, Journal of Materials Science: Materials in Medicine,vol. 20, pp. 691-697, 2009.
  10. [10] M. Labet and W. Thielemans, Synthesis ofpolycaprolactone: A review, Chemical Society Reviews, vol.38, pp. 3484-3504, 2009.
  11. [11] M. A. Woodruff and D. W. Hutmacher, The return of aforgotten polymer - Polycaprolactone in the 21st century,Progress in Polymer Science (Oxford), vol. 35, pp. 1217-1256,2010.
  12. [12] K. W. Ng, et al., In vivo evaluation of an ultra-thinpolycaprolactone film as a wound dressing, Journal ofBiomaterials Science, Polymer Edition, vol. 18, pp. 925-938,2007.
  13. [13] A. El-Ghannam, et al., Formation of surface reactionproducts on bioactive glass and their effects on the expressionof the osteoblastic phenotype and the deposition of mineralizedextracellular matrix, Biomaterials, vol. 18, pp. 295-303, 1997.
  14. [14] D. Krause, et al., The electrophoretic deposition ofBioglass® particles on stainless steel and Nitinol substrates,Surface and Coatings Technology, vol. 200, pp. 4835-4845,2006.
  15. [15] M. H. Fathi and A. Doostmohammadi, Bioactive glassnanopowder and bioglass coating for biocompatibilityimprovement of metallic implant, Journal of MaterialsProcessing Technology, vol. 209, pp. 1385-1391, 2009.
  16. [16] V. Cannillo and A. Sola, Different approaches to producecoatings with bioactive glasses: Enamelling vs plasmaspraying, Journal of the European Ceramic Society, vol. 30,pp. 2031-2039, 2010.
  17. [17] L. L. Hench, Bioceramics, Journal of the AmericanCeramic Society, vol. 81, pp. 1705-1727, 1998.
  18. [18] I. D. Xynos, et al., Gene-expression profiling of humanosteoblasts following treatment with the ionic products ofBioglass® 45S5 dissolution, Journal of Biomedical MaterialsResearch, vol. 55, pp. 151-157, 2001.
  19. [19] A. Hoppe, et al., A review of the biological response toionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials, vol. 32, pp. 2757-2774, 2011.
  20. [20] R. M. Day, et al., Assessment of polyglycolic acid meshand bioactive glass for soft-tissue engineering scaffolds,Biomaterials, vol. 25, pp. 5857-5866, 2004.
  21. [21] J. M. Gomez-Vega, et al., Bioactive glass coatings withhydroxyapatite and Bioglass® particles on Ti-based implants.1. Processing, Biomaterials, vol. 21, pp. 105-111, 2000.
  22. [22] F. Pishbin, et al., Electrophoretic deposition ofchitosan/45S5 Bioglass ® composite coatings for orthopaedicapplications, Surface and Coatings Technology, vol. 205, pp.5260-5268, 2011.613
  23. [23] T. Waltimo, et al., Antimicrobial effect of nanometricbioactive glass 45S5, Journal of Dental Research, vol. 86, pp.754-757, 2007.
  24. [24] S. K. Misra, et al., Comparison of nanoscale andmicroscale bioactive glass on the properties ofP(3HB)/Bioglass® composites, Biomaterials, vol. 29, pp.1750-1761, 2008.
  25. [25] A. R. Boccaccini, et al., Electrophoretic deposition ofbiomaterials, Journal of the Royal Society Interface, vol. 7, pp.S581-S613, 2010.
  26. [26] T. J. Brunner, et al., Glass and bioglass nanopowders byflame synthesis, Chemical Communications, pp. 1384-1386,2006.
  27. [27] T. Kokubo, et al., Solutions able to reproduce in vivosurface-structure changes in bioactive glass-ceramic A-W3,Journal of Biomedical Materials Research, vol. 24, pp. 721-734, 1990.
  28. [28] G. Kister, et al., Structural characterization and hydrolyticdegradation of solid copolymers of D,L-lactide-co-ε-caprolactone by Raman spectroscopy, Polymer, vol. 41, pp.925-932, 2000.
  29. [29] I. Rehman, et al., Structural evaluation of human andsheep bone and comparison with synthetic hydroxyapatite byFT-Raman spectroscopy, Journal of Biomedical MaterialsResearch, vol. 29, issue 10, pp. 1287-94, 1995.
  30. [30] M. Topić, et al., Microstructural characterisation andstress determination in as-plasma sprayed and incubatedbioconductive hydroxyapatite coatings, Surface and CoatingsTechnology, vol. 201, pp. 3633-3641, 2006.
  31. [31] E. G. Merino, et al., Membranes of PDLLA/Bioglass ®with asymmetric bioactivity for biomedical applications,Edinburgh, 2009.
  32. [32] F. Schwarz, et al., Chemisch modifizierte, ultra-hydrophile Titanimplantatoberflächen, Mund-, Kiefer- undGesichtschirurgie, vol. 11, pp. 11-17, 2007.

Important Links:

Go Back