A TIME-SERIES PRE-PROCESSING METHODOLOGY FOR BIOSIGNAL CLASSIFICATION USING STATISTICAL FEATURE EXTRACTION

Simon Fong, Kun Lan, Paul Sun

References

  1. [1] Sokolow, M., McLLory, M. B., and Cheithin, M. D.Clinical cordiology, 5th edition, Vlange Medical Book,1990.
  2. [2] R. Acharya U, A. Kumar, P.S. Bhat, C.M. Lim, S.S.lyengar, N. Kannathal, S.M. Krishnan, Classification ofcardiac abnormalities using heart rate signals, Med. Biol.Eng. Comput., 2004, 42, 288-293.
  3. [3] P. Hopkins, N. Outram, N. Löfgren, E. C. Ifeachor,and K. G. Rosén. A comparative study of fetal heart ratevariability analysis techniques. Conf Proc IEEE Eng MedBiol Soc, 1: 1784, 2006, 1784-1787.
  4. [4] Niranjana Krupa, Mohd Ali MA, Edmond Zahedi,Shuhaila Ahmed, Fauziah M Hassan, Antepartum fetalheart rate feature extraction and classification usingempirical mode decomposition and support vectormachine, BioMedical Engineering Online, 2011, 10:6, 1-15.
  5. [5] J. Bernardes, C. Moura, J. P. de Sa, and L. P. Leite.The Porto system for automated cardiotocographic signalanalysis. J Perinat Med, 19(1-2), 1991, 61–65.
  6. [6] Václav Chudáček, Jiří Spilka, Michal Huptych,George Georgoulas, Petr Janků, Michal Koucký,Chrysostomos Stylios, Lenka Lhotská, Comparison ofLinear and Non-linear Features for IntrapartumCardiotocography Evaluation – Clinical Usability vs.Contribution to Classification, Analysis of BiomedicalSignals and Images, Vol.20, ISSN 1211-412X, 369-372.
  7. [7] K. Englehart, B. Hudgins, P. A Parker, and M.Stevenson, Classification of the myoelectric signal usingtime–frequency based representations, MedicalEngineering and Physics (1999), 21 (6-7), 431–438.
  8. [8] D. Farina, M.F. Lucas, C. Doncarli, Optimizedwavelets for blind separation of non-stationary surfacemyoelectric signals, IEEE Transactions on BiomedicalEngineering (2008) 55 (1), 78-86.
  9. [9] Cristina Stotlojescu, ECG Signals Classificationusing Statistical and Time-Frequency Features, AppliedMedical Informatics, Vol 30, No 1, January 1, 2012, 16-22.
  10. [10]Chung TKH, Mohajer MP, Yang XJ, Chang AMZ,Sahota DS, The prediction of fetal acidosis at birth bycomputerized analysis of intrapartum cardiotocography,Br. J. Obstet. Gynaecol 1995, 102:454-460.
  11. [11]Lunghi F, Magenes G, Pedrinazzi L, Signorini MG,Detection of fetal distress through a support vectormachine based on fetal heart rate parameters, Computersin Cardiology 2005, 32:247-250.
  12. [12]Magenes G, Pedrinazzi L, Signorini MG,Identification of fetal sufferance antepartum through amultiparametric analysis and a support vector machine,Proc. Of the 26th Annual Int. Conf of the IEEE EMBS: 1-5 September 2004 San Francisco, USA; 2004, 462-465.
  13. [13]J. Rodriguez, A. Go˜ni, and A. Illarramendi, Real-time classification of ECGs on a PDA, IEEE Trans. Inf.Technol. Biomed., vol. 9, no. 1, Mar. 2005, 23–34.
  14. [14].Shaik Jakeer Husain, K.Srinivasa Rao, EpilepticSeizures Classification from EEG Signals using NeuralNetworks, 2012 International Conference on Informationand Network Technology (ICINT 2012), IPCSIT vol. 37(2012), IACSIT Press, Singapore, 269-273.
  15. [15]S.R. Chang, S. Kim and H.P. Seon, An Estimation ofthe Correlation Dimension for the EEG in the EmotionalStates, Proc. of the 19th International Conference –IEEE/EMSS, 1997, 1547-1550.
  16. [16]K. Ishino and M. Hagiwara, A Feeling EstimationSystem Using a Simple Electroencephalograph, Proc. ofthe IEEE International Conference on Systems, Man andCybernetics, 2003, 4204-4209.
  17. [17]Huang NE, Shen Z, Long SR, Wu MC, Shih HH,Zheng Q, Yen N-C, Tung CC, Liu HH, The empiricalmode decomposition and hilbert spectrum for nonlinearand nonstationary time series analysis, Royal SocietyLondon Proceeding A, volume 454, 8 March 1998, 903-995.
  18. [18]Bousseljot R, Kreiseler D, Schnabel, A. Nutzung derEKG-Signaldatenbank CARDIODAT der PTB über dasInternet, Biomedizinische Technik, Band 40,Ergänzungsband 1, 1995, S, 317.
  19. [19]L. Ingber, Statistical mechanics of neocorticalinteractions: Canonical momenta indicators ofelectroencephalography, Physical Review E. Volume 55.Number 4, 1997, 4578-4593.
  20. [20]X.L. Zhang, H. Begleiter, B. Porjesz, W. Wang, andA. Litke, Event related potentials during objectrecognition tasks, Brain Research Bulletin, Volume 38,Number 6, 1995, 531-538.
  21. [21]Auffarth, B., Lopez, M., Cerquides, J., Comparisonof redundancy and relevance measures for featureselection in tissue classification of CT images, Advancesin Data Mining: Applications and Theoretical Aspects,Springer, 2010, 248-262.
  22. [22]Simon Fong, Yang Hang, Sabah Mohammed, JinanFiaidhi, Stream-based Biomedical ClassificationAlgorithms for Analyzing Biosignals, Journal ofInformation Processing Systems, Vol.7, No.4, December2011, 717-732.

Important Links:

Go Back