Sebastian Skatulla, Dieter Legner, Ritesh Rao Rama, James Mbewu, Carlo Sansour, Neil Davies, Thomas Franz
[1] T. Belytschko, Y. Y. Lu, and L. Gu. Element-freegalerkin methods. International Journal for Numeri-cal Methods in Engineering, 37:229–256, 1994. [2] D. K. Bogen, S. A. Rabinowitz, A. Needleman, T. A.McMahon, and W. H. Abelmannj. An analysis of themechanical disadvantage of myocardial infarction inthe canine left ventricle. Circ Res, 47(5):728–41, Nov1980. [3] O.H. Cingolani, X.P. Yang, M.A. Cavasin, and O. A.Carretero. Increased systolic performance with dias-tolic dysfunction in adult spontaneously hypertensiverats. Hypertension, 43:249–254, 2003. [4] J M Guccione, L K Waldman, and A D McCulloch.Mechanics of active contraction in cardiac muscle:Part ii-cylindrical models of the systolic left ventri-cle. ASME Journal of Biomechanical Engineering,115:82–90, 1993. [5] K. B. Gupta, M. B. Ratcliffe, M. A. Fallert, L. H. Ed-munds, and D. K. Bogen. Changes in passive me-chanical stiffness of myocardial tissue with aneurysmformation. Circulation, 89:2315–2326, 1994. [6] K. L. Herrmann, A. D. McCulloch, and J.H. Omens.Glycated collagen cross-linking alters cardiac me-chanics in volume-overload hypertrophy. AmericanJournal of Physiology, Heart and Circulatory Physi-ology, 284:1277–1284, 2003. [7] J. W. Holmes, T. K. Borg, and J. W. Covell. Structureand mechanics of healing myocardial infarcts. AnnualReview of Biomedical Engineering, 7:223–253, 2005. [8] J. Kortsmit, N.H. Davies, R. Miller, J.R. Macadang-dang, P. Zilla, and T. Franz. The effect of hydrogel in-jection on cardiac function and myocardial mechanicsin a computational post-infarction model. ComputerMethods in Biomechanics and Biomedical Engineer-ing, 2012. [9] P. Lancaster and K. Salkauskas. Surfaces generatedby moving least squares methods. Mathematics ofcomputation, 37(155):141–158, 1981.s460 [10] W.K. Liu and Y. Chen. Wavelet and multiple scalereproducing kernel methods. Journal of NumericalMethods in Fluids, 21:901–931, 1995. [11] D M Nelson, Z Ma, K L Fujimoto, R Hashizume, andW R Wagner. Intra-myocardial biomaterial injectiontherapy in the treatment of heart failure: Materials,outcomes and challenges. Acta Biomaterialia, 7:1–15, 2011. [12] S.A. Niederer and N.P. Smith. The role of thefrank–starling law in the transduction of cellularwork to whole organ pump function: a computa-tional modeling analysis. PLoS computational biol-ogy, 5(4):e1000371, 2009. [13] Jeffrey H. Omens, Deidre A. MacKenna, and An-drew D. McCulloch. Measurement of strain andanalysis of stress in resting rat left ventricular my-ocardium. Journal of Biomechanics, 26:665–676,1993. [14] J. Rijcken, P. H. Bovendeerd, A. J. Schoofs, D. H.van Campen, and T. Arts. Optimization of cardiacfiber orientation for homogeneous fiber strain duringejection. Ann Biomed Eng, 27(3):289–97, May-Jun1999. [15] T.P. Usyk, R. Mazhari, and A.D. McCulloch. Ef-fect of laminar orthotropic myofiber architecture onregional stress and strain in the canine left ven-tricle. Journal of Elasticity, 61:143–164, 2000.10.1023/A:1010883920374. [16] Samuel T Wall, Joseph C Walker, Kevin E Healy,Mark B Ratcliffe, and Julius M Guccione. Theoret-ical impact of the injection of material into the my-ocardium. Circulation, 114:2627–2635, 2006. [17] J. Wenk, E. Parastou, and Zhihong Z. A novel methodfor quantifying the in-vivo mechanical effect of mate-rial injected into a myocardial infarction. Ann ThoracSurg, 92:935–941, 2011. [18] J.F. Wenk, S.T. Wall, R.C. Peterson, S.L. Helgerson,H.N. Sabbah, M. Burger, N. Stander, M.B. Ratcliffe,and J.M. Guccione. A method for automatically op-timizing medical devices for treating heart failure:designing polymeric injection patterns. Journal ofbiomechanical engineering, 131:121011, 2009.
Important Links:
Go Back