A FULLY AUTOMATIC METHOD FOR ACCURATE PARAMETRIZATION AND RECONSTRUCTION OF ECG WAVEFORMS

Emir Turajlic Sarajevo

References

  1. [1] S. Osowski, T.H. Linh, ECG beat recognition using fuzzyhybrid neural network. IEEE Trans. Biomed. Eng. 48 (11),2001, 1265–1271.
  2. [2] P.E. McSharry, G.D. Clifford, L. Tarassenko, L.A. Smith,A Dynamical Model for Generating SyntheticElectrocardiogram Signals, IEEE Trans. On Biomed. Eng.Publishing House, 50(2), 2003, 289–294.
  3. [3] C.N. Jean, N.A. Amine, Hilbert Transform Based ECGModeling. Biomedical Engineering. Springer Link, 39(3),2005, 36–40.
  4. [4] A. Martusevičienė, Z. Navickas, A. Vainoras, ECG DataAnalysis Using the Convolution of Mealy and Moore,Automata. Electronics and Electrical Engineering Kaunas:Technologija, 4(100), 2010, 103–106.
  5. [5] R. Jan´e, A. Blasi, J. Garc´ia, and P. Laguna, Evaluation ofan automatic threshold based detector of waveform limitsin Holter ECG with QT database, In Computers inCardiology, IEEE Press, 1997, 295–298.
  6. [6] H. Chaouch, K.Ouni, L. Nabli, Segmenting andsupervising an ECG signal by combining the CWT & PCA,IJCSI International Journal of Computer Science Issues,9(1), 2012, 433-440.
  7. [7] M.D. Ortigueira, Archetypal ECG Analysis, Proceedings ofthe 10th Portuguese Conference on Pattern Recognition,Proc. RECPAD'98, 1998, 373-379.
  8. [8] S. Graja and J.M. Boucher, Multiscale hidden Markovmodel applied to ECG segmentation, In WISP 2003: IEEEInternational Symposium on Intelligent Signal Processing,Budapest, Hungary, 2003, 105–109.
  9. [9] A. Koski, Modelling ECG signals with hidden Markovmodels. Artificial Intelligence in Medicine, 8, 1996, 453–471.
  10. [10] E. Turajlic, A Novel Algorithm for ECG Parametrizationand Synthesis. EMBS Conference on BiomedicalEngineering & Sciences, 2012, (in Press).
  11. [11] O. Singh, R. K. Sunkaria, A Robust R-peak DetectionAlgorithm using Wavelet Packets, International Journal ofComputer Applications (0975 – 8887), 36(5), December2011, 37-43.
  12. [12] J. Pan and W. J. Tompkins, A real-time QRS detectionalgorithm. IEEE Trans. Biomed. Eng., vol. BME-32, 1985,220–236.
  13. [13] J. A. Van Alste, T. S. Schilder, Removal of Base-LineWander and Power-Line Interference from the ECG by anEfficient FIR Filter with a Reduced Number of Taps, IEEETrans. Biomed., Eng., 34, 1985, 1052-1060.
  14. [14] P. S. Hamilton, A comparison of adaptive and nonadaptivefilters for reduction of power line interference in the ECG,IEEE Trans. Biomed., Eng., 43, 1996 , 105–109.
  15. [15] N. Pan, V. Mang, M.P. Un, P.S. Hang, Accurate Removalof Baseline Wander in ECG Using Empirical ModeDecomposition. Proceedings of NFSI & ICFBI, 2007, 177-180.
  16. [16] J.M. Leski, N. Henzel, ECG baseline wander and powerlineinterference reduction using nonlinear filter bank, SignalProcess., 35 (4), 2004, 781–793.
  17. [17] C. Daskalov, Filtering of electromyogram artifacts from theelectrocardiogram, Medical Engineering and Physics 21,1999, 731–736.
  18. [18] He T. CG, Tarassenko, L., Application of IndependentComponent Analysis in Removing Artifacts from theElectrocardiogram, Neural Comput & Applic, 15(2), 2006,105-116.
  19. [19] M. Kestler, W. Kratz, F. Schwenker, G.Palm, V. Hombach,M. Hoher, De-noising of high-resolution ECG signals bycombining the discrete wavelet transform with the Wienerfilter. In Computers in Cardiology,1998, 233 - 236.
  20. [20] F.N. Fritsch, R.E. Carlson, Monotone Piecewise CubicInterpolation. SIAM J. Numerical Analysis, 17, 1980, 238-246.
  21. [21] L. Rabiner, B. Juang, Fundamentals of SpeechRecognition,” Englewood Cliffs (N.J. Prentice Hall) 1993.
  22. [22] H. Sakoe, S. Chiba, Dynamic programming algorithmoptimization for spoken word recognition, IEEE. Trans.Acoustics, Speech, and Signal Proc., Vol ASSP-26, 1978.
  23. [23] A.L. Goldberger, L.A.N. Amaral, L. Glass, J.M. Hausdorff,P.Ch. Ivanov, RG Mark, J.E. Mietus, G.B. Moody, C.K.Peng, H.E. Stanley. PhysioBank, PhysioToolkit, andPhysioNet: Components of a New Research Resource forComplex Physiologic Signals. Circulation 101(23):e215-e220 [Circulation Electronic Pages;http://circ.ahajournals.org/cgi/content/full/101/23/e215];2000 (June 13). PMID: 10851218; doi:10.1161/01.CIR.101.23.e215
  24. [24] G.D Clifford, M. Villarroel, Model-Based Determination ofQT Intervals, Computers in Cardiology. IEEE ComputerSociety Press, 33, 2006, 357-360.

Important Links:

Go Back