A BINARY LEVEL SET METHOD BASED ON K-MEANS FOR CONTOUR TRACKING ON SKIN CANCER IMAGES

Azadeh Noori Hoshyar, Adel Ali Al-Jumaily, Yee Mon Aung

View Full Paper

References

  1. [1] M. Cheriet, J. N. Said, and C. Y. Suen, “A recursivethresholding technique for image segmentation,” IEEETransactions on Image Processing, vol. 7, no. 6, pp. 918-921, 1998.
  2. [2] S. K. Warfield, K. Michael, F. A. Jolesz, and K. Ron,“Adaptive, template moderated, spatially varyingstatistical classification,” Medical Image Analysis, vol. 4,no. 1, pp. 43-55, 2000.
  3. [3] M. Lalonde, M. Beaulieu, and L. Gagnon, “Fast androbust optic disc detection using pyramidal decompositionand Hausdorff-based template matching,” IEEETransactions on Medical Imaging, vol. 21, no. 11, pp.1193-1200, 2001.
  4. [4]N. A. Mat-Isa, M. Y. Mashor, and N. H. Othman,“Automatic seed based region growing for pap smearimage segmentation,” in Kuala Lumpur InternationalConference on Biomedical Engineering. 2002. KualaLumpur, Malaysia.
  5. [5]J. K. Paik, Y. C. Park, and S. W. Park, “An edgedetection approach to digital image stabilization based ontri-state adaptive linear neurons,” IEEE Transactions onConsumer Electronics, vol. 37, no. 3, pp. 521-530, 1991.
  6. [6] X. Yang, Z. Weidong, C. Yufei, and F. Xin., “Imagesegmentation with a fuzzy clustering algorithm based onAnt-Tree,” Signal Processing, vol. 88, no. 10, pp. 2453-2462, 2008.
  7. [7] S. K. Singh, K. Shishir, G. S. Tomar, K. Ravi, and G.K. A. Santhalia,“Modified framework of a clusteringalgorithm for image processing applications,” in FirstAsia International Conference on Modelling &Simulation, AMS '07, 2007.
  8. [8]F. Hoeppner, “Fuzzy shell clustering algorithms inimage processing: fuzzy C-rectangular and 2-rectangularshells,” IEEE Transactions on Fuzzy Systems,vol. 5, no.4, pp. 599-613, 1997.
  9. [9]T. Abeel, Y. V. d. Peer, and Y. Saeys, “Java-ML: Amachine learning library,” Journal of Machine LearningResearch, vol. 10, pp. 931-934, 2009.
  10. [10] A. Y. Al-Omary, and M. S. Jamil, “A new approachof clustering based machine-learning algorithm,”Knowledge-Based Systems, vol.19, no.4, pp.248-258,2006.
  11. [11]P. C. Boutros, and A. B. Okey, “Unsupervised patternrecognition: An introduction to the whys and whereforesof clustering microarray data,”Briefings InBioinformatics,vol. 6, no. 4, pp. 331-343, 2005.
  12. [12]J. P. Jesan, “The neural approach to patternrecognition,” Ubiquity, vol.5, no.7, 2004.
  13. [13]T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D.Piatko, R. Silverman, and A. Y. Wu, “An efficient k-means clustering algorithm: analysis andimplementation,” IEEE Transactions on Pattern Analysisand Machine Intelligence, vol. 24, no. 7, pp. 881-892,2002.
  14. [14]H. Wang, W. Wang, J. Yang, and P. S. Yu,“Clustering by pattern similarity in large data sets,” in94Proceedings of the 2002 ACM SIGMOD InternationalConference on Management of data. 2002, Madison,Wisconsin.
  15. [15] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH:an efficient data clustering method for very largedatabases,” in Proceedings of the 1996 ACM SIGMODinternational conference on Management of data, 1996,Montreal, Quebec, Canada.
  16. [16] C. Ordonez, “Clustering binary data streams with k-means,” in Proceedings of the 8th ACM SIGMODworkshop on Research issues in data mining andknowledge discovery. 2003, San Diego, California.
  17. [17]D. Auber, and M. Delest, “A clustering algorithm forhuge trees,” Advances in Applied Mathematics, vol. 31,no. 1 pp. 46-60 2003.
  18. [18]A. S. Mahani, A. E. Carlsson, and R. Wessel,“Motion repulsion arises from stimulus statistics whenanalyzed with a clustering algorithm,” BiologicalCybernetics, vol. 92, no. 4, pp. 288-291, 2005.
  19. [19]L. Li, P. Ross, M. Kruusmaa, X. Zheng,” AComparative Study of Ultrasound Image SegmentationAlgorithms for Segmenting Kidney Tumors”, ISABEL'11,ACM, October 26-29, Barcelona, Spain.
  20. [20]S. Na, L. Xumin, G. yong,” Research on k-meansClustering Algorithm”, Third International Symposium onIntelligent Information Technology and SecurityInformatics, 2010.
  21. [21] M. Kamali, G. Samei, “Border preserving skin lesionsegmentation”, in Proceedings of SPIE 6915, MedicalImaging 2008: Computer-Aided Diagnosis, 2008.
  22. [22]K. Ahmed, T. Jesmin, Md. Zamilur Rahman,” EarlyPrevention and Detection of Skin Cancer Risk using DataMining”, International Journal of Computer Applications(0975 – 8887) Volume 62– No.4, January 2013.
  23. [23]G.Subramanya Nayak, Ottolina Davide,Puttamadappa C,” Classification of Bio Optical signalsusing K- Means Clustering for Detection of SkinPathology”, International Journal of ComputerApplications (0975 – 8887) Volume 1 – No. 2, 2010.
  24. [24] R. T. Whitaker.” Volumetric deformable models:Active blobs. In Visualization in Biomedical Computing”(1994), pp. 122–134.
  25. [25]A. Masood, A. A. Al-Jumaily, “Fuzzy C meanThresholding based Level Set for AutomatedSegmentation of Skin Lesions”, Journal of Signal andInformation Processing, Vol. 4, No. 3B, ISSN: 2159-4465, August 2013, pp. 66-71.
  26. [26] A. Lefohn, J. E.Cates, R. T .Whitaker. ”Interactive,GPU-based level sets for 3D segmentation”. In Proc. OfMedical Image Computing and Computer AssistedIntervention (MICCAI ‟03 (2003), pp. 564–572.
  27. [27] J. Cates, A. Lefohn, and R. Whitaker,”GIST: aninteractive, GPU-based level set segmentation tool for 3Dmedical images”. Medical Image Analysis 8, 3 (2004),217–231.
  28. [28]Li, B.N., et al.: Integrating spatial fuzzy clusteringwith level set methods for automated medical imagesegmentation. Computers in Biology and Medicine 41, 1–10 (2011)
  29. [29] Q. Abbas, I. Fondón, M. Rashid. Unsupervised skinlesions border detection via two-dimensional imageanalysis. Computer Methods and Programs inBiomedicine 104, 1–15 (2011).
  30. [30]M M Puranik, S Krishnan,” Segmentation of ImageUsing Watershed and Fast Level set methods”,International Conference and Workshop on EmergingTrends in Technology (ICWET 2011) – TCET, Mumbai,India.
  31. [31]B. Chen, C. Tai Phang, R. Harrison and Y. Pan,”Novel Hybrid Hierarchical-k-means Clustering Method(H-k-means) for Microarray Analysis”, Workshops andPoster Abstracts, IEEE Computational SystemsBioinformatics Conference, 2005.
  32. [32] M. Silveira , "Comparison of Segmentation Methodsfor Melanoma Diagnosis in Dermoscopy Images," IEEEJournal of Selected Topics in Signal Processing, Vol. 3,pp. 35-45, 2009.
  33. [33]M. Naresh Babu, Vamsi K. Madasu, M. Hanmandlu,S. Vasikarla,” Histo-pathological Image Analysis usingOS-FCM and Level Sets”, 39th IEEE Applied ImageryPattern Recognition Workshop (AIPR),2010.
  34. [34]A.Masood, A.A.Al-Jumaily, A.N. Hoshyar, O.Masood , “Automated Segmentation of Skin Lesions:Modified Fuzzy C mean Thresholding Based Level SetMethod”, 16th International Multi Topic Conference(INMIC), 2013.
  35. [35] J. MacQueen, Some methods for classification andanalysis of multivariate observations. Proc: 5th BerkeleySymp. Math. Statist, Prob, 1:218-297, 1967.
  36. [36]N. Hema Rajini, R.Bhavani,” Enhancing K-meansand Kernelized Fuzzy C-means Clustering with ClusterCenter Initialization in Segmenting MRI brain images”,2011 3rd International Conference on EectronicsComputer Technology(ICECT),2011.
  37. [37] S.J. Osher, J.A. Sethian: Fronts propagation withcurvature dependent speed: Algorithms based onhamilton-jacobi formulations. Journal of ComputationalPhysics, 12–49 (1988).
  38. [38] J.A. Sethian: Level set Methods and Fast MarchingMethods, 2nd edn. Cambridge University Press,Cambridge (1999).
  39. [39]N. i. jabbar, and S. I. jabbar,” A Modified Fuzzy C-Means for Medical Image Thresholding”, Asia PacificConference on Environmental Science and TechnologyAdvances in Biomedical Engineering, Vol.6, 2012.
  40. [40]M. Marin-Galiano, J. Kunert,” Comparison ofANOVA with the Tobit model for analysing sensorydata”, Food Quality and Preference 17 (2006) 2

Important Links:

Go Back