Orhan Firat, Itir Onal, Emre Aksan, Burak Velioglu, Ilke Oztekin, Fatos T. Yarman Vural

View Full Paper


  1. [1] I. Oztekin and D. Badre, “Distributed Patterns ofBrain Activity that Lead to Forgetting.” Frontiers inhuman neuroscience, vol. 5, 2011.
  2. [2] T. Schmah, G. E. Hinton, R. S. Zemel, S. L. Small,and S. C. Strother, “Generative versus discriminativetraining of rbms for classification of fmri images.” inNIPS, 2008.
  3. [3] M. N. Coutanche, S. L. Thompson-Schill, and R. T.Schultz, “Multi-voxel pattern analysis of fMRI datapredicts clinical symptom severity.” NeuroImage,vol. 57, 2011.327
  4. [4] K. A. Norman, S. M. Polyn, G. J. Detre, and J. V.Haxby, “Beyond mind-reading: multi-voxel patternanalysis of fMRI data.” Trends in cognitive sciences,vol. 10, 2006.
  5. [5] J.-D. Haynes and G. Rees, “Decoding mental statesfrom brain activity in humans.” Nature reviews. Neu-roscience, vol. 7, 2006.
  6. [6] K. J. Friston, “Functional and effective connectivity:a review,” Brain connectivity, vol. 1, no. 1, pp. 13–36,2011.
  7. [7] O. Sporns, “Networks of the Brain,” Nov. 2010.
  8. [8] B. Chai, D. B. Walther, D. M. Beck, and F.-F. L., “Ex-ploring Functional Connectivity of the Human Brainusing Multivariate Information Analysis,” Advancesin neural information processing systems, 2009.
  9. [9] J. Richiardi, H. Eryilmaz, S. Schwartz, P. Vuilleumier,and D. Van De Ville, “Decoding brain states fromfMRI connectivity graphs.” NeuroImage, vol. 56,no. 2, pp. 616–26, May 2011.
  10. [10] W. R. Shirer, S. Ryali, E. Rykhlevskaia, V. Menon,and M. D. Greicius, “Decoding subject-driven cog-nitive states with whole-brain connectivity patterns.”Cerebral cortex (New York, N.Y. : 1991), vol. 22,no. 1, pp. 158–65, Jan. 2012.
  11. [11] O. Firat, M. Ozay, I. Onal, I. ¨Oztekin, and F. T.Yarman-Vural, “Functional mesh learning for patternanalysis of cognitive processes,” in IEEE 12th In-ternational Conference on Cognitive Informatics andCognitive Computing, ICCICC, 2013, pp. 161–167.
  12. [12] M. Ozay, I. ¨Oztekin, U. ¨Oztekin, and F. T. Y. Vu-ral, “Mesh Learning for Classifying Cognitive Pro-cesses,” Arxiv:1205.2382, 2012.
  13. [13] O. Ekmekci, O. Firat, M. Ozay, I. ¨Oztekin, F. T.Yarman-Vural, and U. ¨Oztekin, “Mesh learning forobject classification using fmri measurements,” inIEEE International Conference on Image Processing,ICIP, 2013, pp. 2631–2634.
  14. [14] L. K. Hansen, J. Larsen, F. ˚A. Nielsen, S. C. Strother,E. Rostrup, R. Savoy, N. Lange, J. Sidtis, C. Svarer,and O. B. Paulson, “Generalizable patterns in neu-roimaging: How many principal components?” Neu-roImage, vol. 9, no. 5, pp. 534–544, 1999.
  15. [15] R. Viviani, G. Gr¨on, and M. Spitzer, “Functional prin-cipal component analysis of fmri data,” Human brainmapping, vol. 24, no. 2, pp. 109–129, 2005.
  16. [16] G. S. Sidhu, N. Asgarian, R. Greiner, and M. R. G.Brown, “Kernel principal component analysis for di-mensionality reduction in fmri-based diagnosis ofadhd,” Frontiers in Systems Neuroscience, vol. 6,no. 74, 2012.
  17. [17] V. D. Calhoun, T. Adali, L. K. Hansen, J. Larsen, andJ. J. Pekar, “Ica of functional mri data: An overview,”in in Proceedings of the International Workshop onIndependent Component Analysis and Blind SignalSeparation, 2003, pp. 281–288.
  18. [18] F. Pereira, T. Mitchell, and M. Botvinick, “Machinelearning classifiers and fmri: a tutorial overview,”Neuroimage, vol. 45, no. 1, pp. S199–S209, 2009.
  19. [19] P. Mannfolk, R. Wirestam, M. Nilsson, F. St˚ahlberg,and J. Olsrud, “Dimensionality reduction of fmri timeseries data using locally linear embedding,” Mag-netic Resonance Materials in Physics, Biology andMedicine, vol. 23, no. 5-6, pp. 327–338, 2010.
  20. [20] S. L. Bressler and V. Menon, “Large-scale brain net-works in cognition: emerging methods and princi-ples,” Trends in cognitive sciences, vol. 14, no. 6, pp.277–290, 2010.
  21. [21] A. F. Alexander-Bloch, N. Gogtay, D. Meunier,R. Birn, L. Clasen, F. Lalonde, R. Lenroot, J. Giedd,E. T. Bullmore, A. Alexander-Bloch et al., “Disruptedmodularity and local connectivity of brain functionalnetworks in childhood-onset schizophrenia,” Fron-tiers in systems neuroscience, vol. 4, p. 147, 2010.
  22. [22] Y. He and A. Evans, “Graph theoretical modelingof brain connectivity,” Current opinion in neurology,vol. 23, no. 4, pp. 341–350, 2010.
  23. [23] O. Firat, M. Ozay, I. Onal, I. Oztekin, andF. Yarman Vural, “Representation of cognitive pro-cesses using the minimum spanning tree of localmeshes,” in Engineering in Medicine and Biology So-ciety (EMBC), 35th Annual International Conferenceof the IEEE, 2013, pp. 6780–6783.
  24. [24] S. A. Huettel, A. W. Song, and G. McCarthy, Func-tional magnetic resonance imaging. Sinauer Asso-ciates Sunderland, MA, 2004, vol. 1.
  25. [25] S. M. Smith, K. L. Miller, G. Salimi-Khorshidi,M. Webster, C. F. Beckmann, T. E. Nichols, J. D.Ramsey, and M. W. Woolrich, “Network modellingmethods for FMRI.” NeuroImage, vol. 54, no. 2, pp.875–91, Jan. 2011.
  26. [26] J. B. Kruskal, “On the Shortest Spanning Subtreeof a Graph and the Traveling Salesman Problem,”Proceedings of the American Mathematical Society,vol. 7, no. 1, pp. 48–50, Feb. 1956.
  27. [27] D. Zhou, W. K. Thompson, and G. Siegle, “MAT-LAB toolbox for functional connectivity.” NeuroIm-age, vol. 47, no. 4, pp. 1590–607, Oct. 2009.
  28. [28] M. Jenkinson, C. F. Beckmann, T. E. Behrens, M. W.Woolrich, and S. M. Smith, “Fsl,” Neuroimage,vol. 62, no. 2, pp. 782–790, 2012.

Important Links:

Go Back