LARGE SCALE FUNCTIONAL CONNECTIVITY FOR BRAIN DECODING

Orhan Firat, Itir Onal, Emre Aksan, Burak Velioglu, Ilke Oztekin, Fatos T. Yarman Vural

View Full Paper

References

  1. [1] I. Oztekin and D. Badre, “Distributed Patterns of Brain Activity that Lead to Forgetting.” Frontiers in human neuroscience, vol. 5, 2011.
  2. [2] T. Schmah, G. E. Hinton, R. S. Zemel, S. L. Small, and S. C. Strother, “Generative versus discriminative training of rbms for classification of fmri images.” in NIPS, 2008.
  3. [3] M. N. Coutanche, S. L. Thompson-Schill, and R. T. Schultz, “Multi-voxel pattern analysis of fMRI data predicts clinical symptom severity.” NeuroImage, vol. 57, 2011. 327
  4. [4] K. A. Norman, S. M. Polyn, G. J. Detre, and J. V. Haxby, “Beyond mind-reading: multi-voxel pattern analysis of fMRI data.” Trends in cognitive sciences, vol. 10, 2006.
  5. [5] J.-D. Haynes and G. Rees, “Decoding mental states from brain activity in humans.” Nature reviews. Neuroscience, vol. 7, 2006.
  6. [6] K. J. Friston, “Functional and effective connectivity: a review,” Brain connectivity, vol. 1, no. 1, pp. 13–36, 2011.
  7. [7] O. Sporns, “Networks of the Brain,” Nov. 2010.
  8. [8] B. Chai, D. B. Walther, D. M. Beck, and F.-F. L., “Exploring Functional Connectivity of the Human Brain using Multivariate Information Analysis,” Advances in neural information processing systems, 2009.
  9. [9] J. Richiardi, H. Eryilmaz, S. Schwartz, P. Vuilleumier, and D. Van De Ville, “Decoding brain states from fMRI connectivity graphs.” NeuroImage, vol. 56, no. 2, pp. 616–26, May 2011.
  10. [10] W. R. Shirer, S. Ryali, E. Rykhlevskaia, V. Menon, and M. D. Greicius, “Decoding subject-driven cognitive states with whole-brain connectivity patterns.” Cerebral cortex (New York, N.Y. : 1991), vol. 22, no. 1, pp. 158–65, Jan. 2012.
  11. [11] O. Firat, M. Ozay, I. Onal, I. ¨Oztekin, and F. T. Yarman-Vural, “Functional mesh learning for pattern analysis of cognitive processes,” in IEEE 12th International Conference on Cognitive Informatics and Cognitive Computing, ICCICC, 2013, pp. 161–167.
  12. [12] M. Ozay, I. ¨Oztekin, U. ¨Oztekin, and F. T. Y. Vural, “Mesh Learning for Classifying Cognitive Processes,” Arxiv:1205.2382, 2012.
  13. [13] O. Ekmekci, O. Firat, M. Ozay, I. ¨Oztekin, F. T. Yarman-Vural, and U. ¨Oztekin, “Mesh learning for object classification using fmri measurements,” in IEEE International Conference on Image Processing, ICIP, 2013, pp. 2631–2634.
  14. [14] L. K. Hansen, J. Larsen, F. ˚A. Nielsen, S. C. Strother, E. Rostrup, R. Savoy, N. Lange, J. Sidtis, C. Svarer, and O. B. Paulson, “Generalizable patterns in neuroimaging: How many principal components?” NeuroImage, vol. 9, no. 5, pp. 534–544, 1999.
  15. [15] R. Viviani, G. Grön, and M. Spitzer, “Functional principal component analysis of fmri data,” Human brain mapping, vol. 24, no. 2, pp. 109–129, 2005.
  16. [16] G. S. Sidhu, N. Asgarian, R. Greiner, and M. R. G. Brown, “Kernel principal component analysis for dimensionality reduction in fmri-based diagnosis of adhd,” Frontiers in Systems Neuroscience, vol. 6, no. 74, 2012.
  17. [17] V. D. Calhoun, T. Adali, L. K. Hansen, J. Larsen, and J. J. Pekar, “Ica of functional mri data: An overview,” in in Proceedings of the International Workshop on Independent Component Analysis and Blind Signal Separation, 2003, pp. 281–288.
  18. [18] F. Pereira, T. Mitchell, and M. Botvinick, “Machine learning classifiers and fmri: a tutorial overview,” Neuroimage, vol. 45, no. 1, pp. S199–S209, 2009.
  19. [19] P. Mannfolk, R. Wirestam, M. Nilsson, F. St˚ahlberg, and J. Olsrud, “Dimensionality reduction of fmri time series data using locally linear embedding,” Magnetic Resonance Materials in Physics, Biology and Medicine, vol. 23, no. 5-6, pp. 327–338, 2010.
  20. [20] S. L. Bressler and V. Menon, “Large-scale brain networks in cognition: emerging methods and principles,” Trends in cognitive sciences, vol. 14, no. 6, pp. 277–290, 2010.
  21. [21] A. F. Alexander-Bloch, N. Gogtay, D. Meunier, R. Birn, L. Clasen, F. Lalonde, R. Lenroot, J. Giedd, E. T. Bullmore, A. Alexander-Bloch et al., “Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia,” Frontiers in systems neuroscience, vol. 4, p. 147, 2010.
  22. [22] Y. He and A. Evans, “Graph theoretical modeling of brain connectivity,” Current opinion in neurology, vol. 23, no. 4, pp. 341–350, 2010.
  23. [23] O. Firat, M. Ozay, I. Onal, I. Oztekin, and F. Yarman Vural, “Representation of cognitive processes using the minimum spanning tree of local meshes,” in Engineering in Medicine and Biology Society (EMBC), 35th Annual International Conference of the IEEE, 2013, pp. 6780–6783.
  24. [24] S. A. Huettel, A. W. Song, and G. McCarthy, Functional magnetic resonance imaging. Sinauer Associates Sunderland, MA, 2004, vol. 1.
  25. [25] S. M. Smith, K. L. Miller, G. Salimi-Khorshidi, M. Webster, C. F. Beckmann, T. E. Nichols, J. D. Ramsey, and M. W. Woolrich, “Network modelling methods for FMRI.” NeuroImage, vol. 54, no. 2, pp. 875–91, Jan. 2011.
  26. [26] J. B. Kruskal, “On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem,” Proceedings of the American Mathematical Society, vol. 7, no. 1, pp. 48–50, Feb. 1956.
  27. [27] D. Zhou, W. K. Thompson, and G. Siegle, “MATLAB toolbox for functional connectivity.” NeuroImage, vol. 47, no. 4, pp. 1590–607, Oct. 2009.
  28. [28] M. Jenkinson, C. F. Beckmann, T. E. Behrens, M. W. Woolrich, and S. M. Smith, “Fsl,” Neuroimage, vol. 62, no. 2, pp. 782–790, 2012.

Important Links:

Go Back