THE EFFECT OF WINDOW LENGTH ON THE CLASSIFICATION OF DYNAMIC ACTIVITIES THROUGH A SINGLE ACCELEROMETER

Benish Fida, Ivan Bernabucci, Daniele Bibbo, Silvia Conforto, Antonino Proto, Maurizio Schmid

View Full Paper

References

  1. [1] S.J. Preece, J.Y. Goulermas, L. P J; Kenney & D.Howard, A Comparison of Feature Extraction Methods for theClassification of dynamic Activities From Accelerometer Data,IEEE Transactions on Biomedical Engineering, 56(3), 2009,871- 879.
  2. [2] H. Dejnabadi, B.M. Jolles, & K. Aminian, A new approachto accurate measurement of uniaxial joint angles based on acombination of accelerometers and gyroscopes, IEEE Trans.Biomed. Eng., vol.52, 2005, 1478-1484.
  3. [3] D. Karantonis, M. Narayanan , M. Mathie , N. Lovell & B.Celler, Implementation of a real-time human movementclassifier using a triaxial accelerometer for ambulatorymonitoring, IEEE Trans. Inf. Technol. Biomed., 10(1), 2006, 156-167.
  4. [4] A.K. Bourke, P. van de Ven, M. Gamble, R. O'Connor, K.Murphy & E. Bogan, Assessment of waist-worn tri-axialaccelerometer based fall-detection algorithms using continuousunsupervised activities, Proc. IEEE EMBS, 2010, 2782–2785.
  5. [5] L. Tong, Q. Song, Y. Ge & M. Liu, HMM-Based HumanFall Detection and Prediction Method Using Tri-AxialAccelerometer, IEEE J. Sensors, 13(5), 2013, 1849-1856.
  6. [6] H. Gjoreski, M. Lustrek & M. Gams, AccelerometerPlacement for Posture Recognition and Fall Detection, 7thInternational Conference on Intelligent Environments (IE),2011, 47-54.
  7. [7] N. Ravi, N. Dandekar, P. Mysore, & M. L. Littman,Activity recognition from accelerometer data, In Proceedings ofthe 17th conference on Innovative applications of artificialintelligence, Vol. 3. , 2005, 1541-1546.
  8. [8] A.M. Khan, Young-Koo Lee; S.Y. Lee & Tae-Seong Kim,A Triaxial Accelerometer-Based Physical-Activity Recognitionvia Augmented-Signal Features and a Hierarchical Recognizer,IEEE Transactions on Information Technology in Biomedicine,14(5), 2010, 1166-1172.
  9. [9] A. Dalton & G. OLaighin, Comparing Supervised LearningTechniques on the Task of Physical Activity Recognition, IEEEJournal of Biomedical and Health Informatics, 17(1), 2013, 46-52.
  10. [10] D. Rodriguez-Martin, A. Samà, C. Perez-Lopez, A. Català,J. Cabestany & A. Rodriguez-Molinero, SVM-based postureidentification with a single waist-located triaxial accelerometer,Expert Systems with Applications, 40(18), 2013, 7203-7211.
  11. [11] H.-Y. Lau, K.-Y. Tong & H. Zhu. Support vector machinefor classification of walking conditions using miniaturekinematic sensors, Medical and Biological Engineering andComputing, 46(2), 2008, 563–573.
  12. [12] R. Muscillo, M. Schmid, S. Conforto, & T. D'Alessio, Anadaptive Kalman-based Bayes estimation technique to classifylocomotor activities in young and elderly adults throughaccelerometers, Medical Engineering and Physics,32(8), 2010,849–859.
  13. [13] R. Muscillo, S. Conforto, M. Schmid, P. Caselli & T.D'Alessio, Classification of Motor Activities through DerivativeDynamic Time Warping applied on Accelerometer Data,Proceedings of the 29th IEEE-EMBS Conference, Lyon, France,2007, 23-26.
  14. [14] R. Muscillo, M. Schmid, S. Conforto & T. D'Alessio, Earlyrecognition of upper limb motor tasks through accelerometers:real-time implementation of a DTW-based algorithm,Computers in Biology and Medicine, 41(3), 2011, 164-172.
  15. [15] I. Cleland, B. Kikhia, C. Nugent, A. Boytsov, J.Hallberg, K. Synnes, S. McClean & D. Finlay, OptimalPlacement of Accelerometers for the Detection of EverydayActivities, Sensors, 13, 2013, 9183-9200.126
  16. [16] L. Bao & S. S. Intille, Activity recognition from user-annotated acceleration data, Proceedings of PERVASIVE, 2004,1-17.
  17. [17] A. Mannini & A. M. Sabatini, Machine Learning Methodsfor Classifying Human Physical Activity from On-BodyAccelerometers, Sensors, 10(2), 2010, 1154-1175.
  18. [18] Y.-J. Hong, I.-J Kim, S. C. Ahn & H.-G. Kim, Mobilehealth monitoring system based on activity recognition usingaccelerometer, Simulation Modelling Practice and Theory,18(4), 2010, 446-455.
  19. [19] F. Ioana-Iuliana, & D. Rodica-Elena, Detection of dailymovements from data collected with two tri-axialaccelerometers, 34th International Conference onTelecommunications and Signal Processing (TSP), 2011, 376-380.
  20. [20] O. Banos, M. Damas, H. Pomares, A. Prieto & I. Rojas,Daily living activity recognition based on statistical featurequality group selection, Expert Systems with Applications,vol.39(9), 2012, 8013-8021.
  21. [21] L. Atallah, B. Lo, R. King & G.-Z. Yang, Sensor Placementfor Activity Detection Using Wearable Accelerometers, Proc.Int. Workshop Wearable Implantable Body Sens. Netw., 2010,24 -29.
  22. [22] J. Baek, G. Lee, W. Park & B.-J. Yun, AccelerometerSignal Processing for User Activity Detection, KES, 2004, 610-617.
  23. [23] H. Chan, M. Yang, H. Wang, H. Zheng, S. I. McClean, R.Sterritt & R. E. Mayagoitia, Assessing Gait Patterns of HealthyAdults Climbing Stairs Employing Machine LearningTechniques, Int. J. Intell. Syst. 28(3), 2013, 257-270.
  24. [24] B. Najafi, K. Aminian, A. Paraschiv-Ionescu, F. Loew,C.J. Bula & P. Robert, Ambulatory system for human motionanalysis using a kinematic sensor: monitoring of daily physicalactivity in the elderly, IEEE Transactions on BiomedicalEngineering, 50(6), 2003, 711-723.
  25. [25] M. Mathie, B. Celler, N. Lovell & A. Coster, 'Classificationof basic daily movements using a triaxial accelerometer, Med.Biol. Eng. Comput., 42, 2004, 670 -687.
  26. [26] N. Wang, E. Ambikairajah, N.H. Lovell, and B.G. Celler,Accelerometry Based Classification of Walking Patterns UsingTime-frequency Analysis, Proc. 29th Annu. Conf. IEEE Eng.Med. Biol. Soc., Lyon, France, 2007, 4899 -4902.
  27. [27] M. Schmid, F. Riganti-Fulginei, I. Bernabucci, A. Laudani,D. Bibbo, R. Muscillo, A. Salvini & S. Conforto, SVM versusMAP on accelerometer data to distinguish among locomotoractivities executed at different speeds, Computational andMathematical Methods in Medicine, 2013: Article ID 343084,2013.
  28. [28] L. Tong; Q. Song; Y. Ge & M. Liu, HMM-Based HumanFall Detection and Prediction Method Using Tri-AxialAccelerometer, IEEE J. Sensors, 13(5), 2013, 1849,1856.
  29. [29] M.-W. Lee, A. M. Khan & T.-S Kim, A single tri-axialaccelerometer-based real-time personal life log system capableof human activity recognition and exercise informationgeneration, Personal Ubiquitous Comput., 15, 2011, 887 -898.
  30. [30] M.N. Nayan, F.E. Tay, K.H. Seah, & Y.Y. Sitoh,Classification of gait patterns in the time frequency domain, J.Biomech., 39, 2006, 2647-2656.
  31. [31] R. Herren, A. Sparti, K. Aminian & Y. Schutz, Theprediction of speed and incline in outdoor running in humansusing accelerometry, Medicine & Science in Sports &Exercise, 31(7), 1999, 1053–1059.

Important Links:

Go Back