SCALED CONJUGATE GRADIENT BASED DECISION SUPPORT SYSTEM FOR AUTOMATED DIAGNOSIS OF SKIN CANCER

Ammara Masood, Adel Al-Jumaily, Yee Mon Aung

View Full Paper

References

  1. [1] Siegel, R., et al., Cancer statistics, 2011. CA: A CancerJournal for Clinicians, 2011, vol. 61(4), 212-236.
  2. [2] Society, A.C., Cancer Facts & Figures 2012,http://www.cancer.org/acs/groups/content/epidemiologysurveilance/documents/document/acspc-031941.pdf 2012.
  3. [3] Causes of death 2010, C.W.o. Australia, Editor, AustralianBureau of Statistics: Canberra, Australia.
  4. [4] Australian, C.C. Cancer Council to launch new research /Failure to monitor highlights cancer risk. 2010;.
  5. [5] Sikorski, J. “Identification of malignant melanoma bywavelet analysis”, in Student/Faculty Research Day, CSIS,Pace University, 2004.
  6. [6] Ganster, H., et al., Automated melanoma recognition, IEEETransactions on Medical Imaging, 2001, vol. 20(3), 233-239.
  7. [7] Rubegni, P., et al., Automated diagnosis of pigmented skinLesions, International Journal of Cancer, 2002, vol.101(6), 576-580.
  8. [8] Ignazio Stanganelli, A.B., Luigi Calori, Roberto Gori, etal., Computer aided diagnosis of melanocytic tumors,Anticancer Research, 2005, vol. 25, 4577-4582.
  9. [9] Ruiz, D., et al., A decision support system for the diagnosisof melanoma: A comparative approach, Expert Systemswith Applications, 2011, vol. 38(12), 15217-15223.
  10. [10] Masood. Ammara., Ali Al-Jumaily, Adel, “ComputerAided Diagnostic Support System for Skin Cancer: AReview of Techniques and Algorithms”, InternationalJournal of Biomedical Imaging, p. 22, 2013.
  11. [11] Masood. Ammara, Adel Al Jumaily, “Fuzzy C meanThresholding based Level Set for Automated Segmentationof Skin Lesions”, Journal of Signal and InformationProcessing, vol. 4(3B), 66-71, July 2013.
  12. [12] Masood, Ammara Adel Al Jumaily, Al Hoshyar, AzadehNoori Masood, Omama. “Automated segmentation of skinlesions: Modified Fuzzy C mean thresholding based levelset method”, Proc. 2013 16th International Multi TopicConference (INMIC), 201-206, December 2013.
  13. [13] Hwang, H. and R.A. Haddad, Adaptive median filters: newalgorithms and results, IEEE Transactions on ImageProcessing, 1995, vol. 4(4), 499-502.
  14. [14] Sun, T. and Y. Neuvo, Detail-preserving median basedfilters in image processing, Pattern Recognition Letters,1994, vol. 15(4), 341-347.
  15. [15] Masood, A.A.-J., Adel Ali. Integrating soft and hardthreshold selection algorithms for accurate segmentation ofskin lesion, Proc 2014 Middle East Conference onBiomedical Engineering (MECBME), 83-86, 2014.
  16. [16] Ammara Masood, Adel Al Jumaily, Maali, Yashar, “LevelSet Initialization Based on Modified Fuzzy C MeansThresholding for Automated Segmentation of SkinLesions”, in Neural Information Processing, Editor M.H.Lee, Akira Hou, Zeng-Guang Kil, RheeMan, SpringerBerlin Heidelberg. 341-351, November 2013.
  17. [17] Tanaka, T.T., S. Kabuta, I. Shimizu, K. Tanaka, M. Oka, H.“Pattern classification of nevus with texture analysis”,Proc. 26th Annual International Conference of the IEEEEngineering in Medicine and Biology Society, 2004, 1459-1462.
  18. [18] Parekh, R., “Improving Texture Recognitionusing Combined GLCM and Wavelet Features”,International Journal of Computer Applications, vol.29(10), 41-46, 2011.
  19. [19] Markus Gipp, G.M., Nathalie Harder, Apichat Suratanee,Karl Rohr, Rainer König, Reinhard Männer, “Haralick’sTexture Features Computed by GPUs for BiologicalApplications” IAENG International Journal of ComputerScience, vol. 36(1), 2009.
  20. [20] Mohanaiah, P.S., L. GuruKumar, “Image Texture FeatureExtraction Using GLCM Approach”, International Journalof Scientific and Research Publications (IJSRP), vol. 3(5),1-5, 2013.
  21. [21] Ho Tak Lau, A.A.-J., “Intelligent Automatically EarlyDetection of Skin Cancer: Study Based on Neural NetworkClassification”, Proc. International Conference on SoftComputing and Pattern Recognition, 2009, 375-380.
  22. [22] Dreiseitl, S., et al., “A Comparison of Machine LearningMethods for the Diagnosis of Pigmented Skin Lesions”,Journal of Biomedical Informatics, 34(1): p. 28-36, 2001.
  23. [23] Moller, M.F., “A scaled conjugate gradient algorithm forfast supervised learning”, Neural Networks, vol. 6, 525—533, 1993.
  24. [24] Xiaojing, Y., et al., “SVM-based Texture Classification andApplication to Early Melanoma Detection”, Proc. 28thAnnual International Conference of the IEEE Engineeringin Medicine and Biology Society, 2006. New York, USA,4775-4778.
  25. [25] Huang, G.-B., Q.-Y. Zhu, and C.-K. Siew, “Extremelearning machine: Theory andapplications”,Neurocomputing, vol. 70(1–3), 489-501,2006.

Important Links:

Go Back