HIGH ACCURACY BACK-RETREAT DIFFUSION-FUZZY CLUSTERING OF BREAST CANCER DATA FOR THE DETECTION OF MALIGNANCY

Ashutosh Patri, Abhijit Nayak

View Full Paper

References

  1. [1] What Are The Risk Factors For Breast Cancer? Available: http://www.cancer.org/cancer/breastcancer /detailedguide/breast-cancer-risk-factors
  2. [2] National Cancer Institute Cancer Advances In Focus. Available: http://www.cancer.gov/cancertopics/factsheet/cancer-advances-in-focus/breast
  3. [3] Cancer Information and Type of Cancer. Available: https://tmc.gov.in/cancerinfo/breast/breast.html
  4. [4] B. Chaiwun and P. Thomer, Fine needle aspiration for evaluation of breast masses, International Journal of Current Opinion in Obstetrics and Gyncology, 19(1), 2007, 48-55
  5. [5] O. L. Mangasarian et al. (1994). Breast Cancer Diagnosis And Prognosis Via Linear Programming [Online]. Available FTP: ftp.cs.wisc.edu Directory: mathprog/tech-reports File: 94-10.pdf.
  6. [6] S. Ozsen and R. Ceylan, Comparison of AIS and fuzzy c-means clustering methods on the classification of breast cancer and diabetes datasets, Turkish Journal of Electrical Engineering & Computer Science, 2014, doi: 10.3906/elk-1210-62
  7. [7] F. Camastra and A. Verri, A Novel Kernel Method for Clustering, IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(5), 2005, 801-805
  8. [8] P. Maji and S. K. Pal, Rough Set Based Generalized Fuzzy C-Means Algorithm and Quantitative Indices, IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 37(6), 2007, 1529 1540
  9. [9] Z. X. Yin and J. H. Chiang, Patterns Discovery on Complex Diagnosis and Biological Data Using Fuzzy Latent Variables, Proc. 23rd IEEE Int. Conf. on Data Engineering, Istanbul, Turkey, 2007, 576-585.
  10. [10] H. Koyuncu and R. Ceylan, Artificial Neural Network Based on Rotation Forest for Biomedical Pattern Classification , Proc. 36th IEEE International Conf. on Telecommunication and Signal Processing, Rome, Italy, 2013, 581 585.
  11. [11] X. Wang, X. Liu, and L. Zhang, The Improved Fuzzy Clustering Algorithm Based on AFS Theory and Its Applications to Wisconsin Breast Cancer Data, Proc. IEEE International Conf. on Intellectual Control and Information Processing, Dalian, China, 2010, 374378.
  12. [12] D. E. Goodman, L. C. Boggess and A. B. Watkins, Articial immune system classication of multiple-class problems, Proc. Articial neural networks in engineering, St. Louis, Missouri, 2002, 179-183.
  13. [13] C. Sirisomboonrat, and K. Sinapiromsaran, Breast Cancer Diagnosis using Multi-Attributed Lens Recursive Partitioning Algorithm, Proc. 10th Int. Conf. ICT and Knowledge Engineering, Bangkok, Thailand, 2012, 40 45.
  14. [14] G. I. Salama, M. B. Abdelhalim, and M. A. Zeid, Experimental Comparison of Classifiers for Breast Cancer Diagnosis, Proc 17th IEEE Int. Conf. on Computer Engineenig & Systems, Cairo, Egypt, 2012, 180185.
  15. [15] M. F. Akay , Support vector machines combined with feature selection for breast cancer diagnosis , International Journal of Expert Systems with Applications, 36(2), 2009, 32403247.
  16. [16] J. C. Bezdek, R. Ehrlich and W. Full, FCM: The Fuzzy C-Means Clustering Algorithm, Computers & Geosciences, 10(2), 1984, 191-203. 14
  17. [17] O. Cominetti, A. Matzavinos, S. Samarasinghe, D. Kulasiri, S. Liu, P. K. Maini, and R. Erban, DifFUZZY: A fuzzy clustering algorithm for complex data sets, International Journal of Computational Intelligence in Bioinformatics and Systems Biology, 1(4), 2010, 402-417.
  18. [18] BreastCancer.Available:http://www.cancer.gov/cancertopics/types/breast
  19. [19] Dr. William H. Wolberg. (1992). Wisconsin Breast Cancer Database, UCI Machine Learning Repository. Available: http://archive.ics.uci.edu/ml/machinelearning-databases/breast-cancer-wisconsin/breastcancer-wisconsin.data
  20. [20] W. N. Street et al. (1993). Nuclear feature extraction for breast tumor diagnosis [Online]. Available FTP: ftp.cs.wisc.edu Directory: mathprog/cpo-dataset/machine-learn/cancer/cancerimages File:92 7241.gif, 92 5292.gif.
  21. [21] D.L. Davies and D.W. Bouldin, A Cluster Separation Measure, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1(2), 1979, 224-227.
  22. [22] J.C. Dunn, A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact Well-Separated Clusters, Cybernetics and Systems, 3(3), 1973, 32-57.
  23. [23] T. Calinski and J. Harabasz, A Dendrite Method for Cluster Analysis, Communication in Statistics, 3(1), 1974, 1-27.
  24. [24] T. Sing, O. Sander, N. Beerenwinkel, and T. Lengauer, ROCR: visualizing classifier performance in R, Bioinformatics, 21(20), 2005, 3940-3941.
  25. [25] H. Timm, C. Dring, and R. Kruse , Fuzzy Cluster Analysis of Partially Missing Datasets, Proc. 2nd European Symp. on Intelligent Technologies, Hybrid Systems and their implementation on Smart Adaptive Systems, Algarve, Portugal, 2002, 426-431.
  26. [26] J. Bishop, M. Coleman, B. Cooke, R. Davies, F. Frost, J. Grace, L. Reeves, M. Rickard, N. Wetzig, and H. Zorbas, The specimen: request, preparation and processing (Breast fine needle aspiration cytology and core biopsy: a guide for practice,1st Ed., Camperdown, Australia, NBCC, 2004), ch. V, 27-34.
  27. [27] Y.-H. Yu, W. Wei, and J.-L. Liu, Diagnostic value of fine-needle aspiration biopsy for breast mass: a systematic review and meta-analysis, BMC Cancer, 12, 2012, article 41.
  28. [28] S. Pantazi, Y. Kagolovsky, and J. R. Moehr, Cluster Analysis of Wisconsin Breast Cancer Dataset Using Self-Organizing Maps, Studies in Health Technology and Informatics, 90, 2002, 431-436.

Important Links:

Go Back