Ashutosh Patri, Abhijit Nayak

View Full Paper


  1. [1] What Are The Risk Factors For Breast Cancer?Available: http://www.cancer.org/cancer/breastcanc-er /detailedguide/breast-cancer-risk-factors
  2. [2] National Cancer Institute Cancer Advances In Focus.Available: http://www.cancer.gov/cancertopics/facts-heet/cancer-advances-in-focus/breast
  3. [3] Cancer Information and Type of Cancer.Available: https://tmc.gov.in/cancerinfo/breast/brea-st.html
  4. [4] B. Chaiwun and P. Thomer, Fine needle aspiration forevaluation of breast masses, International Journal ofCurrent Opinion in Obstetrics and Gyncology, 19(1),2007, 48-55
  5. [5] O. L. Mangasarian et al. (1994). Breast Cancer Di-agnosis And Prognosis Via Linear Programming [On-line]. Available FTP: ftp.cs.wisc.edu Directory: math-prog/tech-reports File: 94-10.pdf.
  6. [6] S. Ozsen and R. Ceylan, Comparison of AIS and fuzzyc-means clustering methods on the classification ofbreast cancer and diabetes datasets, Turkish Journalof Electrical Engineering & Computer Science, 2014,doi: 10.3906/elk-1210-62
  7. [7] F. Camastra and A. Verri, A Novel Kernel Methodfor Clustering, IEEE Transactions on Pattern Analy-sis and Machine Intelligence, 27(5), 2005, 801-805
  8. [8] P. Maji and S. K. Pal, Rough Set Based GeneralizedFuzzy C-Means Algorithm and Quantitative Indices,IEEE Transactions on Systems, Man, and Cybernet-ics, Part B: Cybernetics, 37(6), 2007, 1529 - 1540
  9. [9] Z. X. Yin and J. H. Chiang, Patterns Discovery onComplex Diagnosis and Biological Data Using FuzzyLatent Variables, Proc. 23rd IEEE Int. Conf. on DataEngineering, Istanbul, Turkey, 2007, 576-585.
  10. [10] H. Koyuncu and R. Ceylan, Artificial Neural Net-work Based on Rotation Forest for Biomedical PatternClassification , Proc. 36th IEEE International Conf.on Telecommunication and Signal Processing, Rome,Italy, 2013, 581 - 585.
  11. [11] X. Wang, X. Liu, and L. Zhang, The Improved FuzzyClustering Algorithm Based on AFS Theory and ItsApplications to Wisconsin Breast Cancer Data, Proc.IEEE International Conf. on Intellectual Control andInformation Processing, Dalian, China, 2010, 374-378.
  12. [12] D. E. Goodman, L. C. Boggess and A. B. Watkins,Articial immune system classication of multiple-classproblems, Proc. Articial neural networks in engineer-ing, St. Louis, Missouri, 2002, 179-183.
  13. [13] C. Sirisomboonrat, and K. Sinapiromsaran, BreastCancer Diagnosis using Multi-Attributed Lens Recur-sive Partitioning Algorithm, Proc. 10th Int. Conf.ICT and Knowledge Engineering, Bangkok, Thailand,2012, 40 - 45.
  14. [14] G. I. Salama, M. B. Abdelhalim, and M. A. Zeid, Ex-perimental Comparison of Classifiers for Breast Can-cer Diagnosis, Proc 17th IEEE Int. Conf. on Com-puter Engineenig & Systems, Cairo, Egypt, 2012, 180-185.
  15. [15] M. F. Akay , Support vector machines combined withfeature selection for breast cancer diagnosis , Inter-national Journal of Expert Systems with Applications,36(2), 2009, 3240- 3247.
  16. [16] J. C. Bezdek, R. Ehrlich and W. Full, FCM: The FuzzyC-Means Clustering Algorithm, Computers & Geo-sciences, 10(2), 1984, 191-203.14
  17. [17] O. Cominetti, A. Matzavinos, S. Samarasinghe, D.Kulasiri, S. Liu, P. K. Maini, and R. Erban, Dif-FUZZY: A fuzzy clustering algorithm for complexdata sets, International Journal of ComputationalIntelligence in Bioinformatics and Systems Biology,1(4), 2010, 402-417.
  18. [18] BreastCancer.Available:http://www.cancer.gov/cancer-topics/types/breast
  19. [19] Dr. William H. Wolberg. (1992). Wisconsin BreastCancer Database, UCI Machine Learning Repository.Available: http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data
  20. [20] W. N. Street et al. (1993). Nuclear feature ex-traction for breast tumor diagnosis [Online].Available FTP: ftp.cs.wisc.edu Directory: math-prog/cpo-dataset/machine-learn/cancer/cancerimagesFile:92 7241.gif, 92 5292.gif.
  21. [21] D.L. Davies and D.W. Bouldin, A Cluster SeparationMeasure, IEEE Transactions on Pattern Analysis andMachine Intelligence, 1(2), 1979, 224-227.
  22. [22] J.C. Dunn, A Fuzzy Relative of the ISODATA Pro-cess and Its Use in Detecting Compact Well-SeparatedClusters, Cybernetics and Systems, 3(3), 1973, 32-57.
  23. [23] T. Calinski and J. Harabasz, A Dendrite Method forCluster Analysis, Communication in Statistics, 3(1),1974, 1-27.
  24. [24] T. Sing, O. Sander, N. Beerenwinkel, and T. Lengauer,ROCR: visualizing classifier performance in R, Bioin-formatics, 21(20), 2005, 3940-3941.
  25. [25] H. Timm, C. Dring, and R. Kruse , Fuzzy ClusterAnalysis of Partially Missing Datasets, Proc. 2ndEuropean Symp. on Intelligent Technologies, HybridSystems and their implementation on Smart AdaptiveSystems, Algarve, Portugal, 2002, 426-431.
  26. [26] J. Bishop, M. Coleman, B. Cooke, R. Davies, F. Frost,J. Grace, L. Reeves, M. Rickard, N. Wetzig, and H.Zorbas, The specimen: request, preparation and pro-cessing (Breast fine needle aspiration cytology andcore biopsy: a guide for practice,1st Ed., Camper-down, Australia, NBCC, 2004), ch. V, 27-34.
  27. [27] Y.-H. Yu, W. Wei, and J.-L. Liu, Diagnostic value offine-needle aspiration biopsy for breast mass: a sys-tematic review and meta-analysis, BMC Cancer, 12,2012, article 41.
  28. [28] S. Pantazi, Y. Kagolovsky, and J. R. Moehr, ClusterAnalysis of Wisconsin Breast Cancer Dataset UsingSelf-Organizing Maps, Studies in Health Technologyand Informatics, 90, 2002, 431-436.

Important Links:

Go Back