AUTOMATED SEGMENTATION METHODS FOR MICROSCOPIC BLOOD CELLS

Sandy Rihana, Elias Abi Hanna, Jad Charif

View Full Paper

References

  1. [1] Wadsworth Center, New York State Department of Health | Science in Pursuit of Health. [Online]. Available: http://www.wadsworth.org/. [Accessed: 05-Jun-2013].
  2. [2] Ongun, G., Halici U., Leblebicioglu, K. Atalay, V. Beksac, M. & Beksac, S. Feature extraction and classification of blood cells for an automated differential blood count system, Proceedings of the International Joint Conference on Neural Networks,vol.4,pp. 2461 2466, 2001
  3. [3] O. Lezoray, A. Elmoataz, H. Cardot, G. Gougeon, M. Lecluse, H. √Člie, M. Revenu, Segmentation of Cytological Images Using Color and Mathematical Morphology , 7th European conference in seretology, Amsterdam, Hollande, p.52, april 1998.
  4. [4] N. R. Mokhtar, N. H. Harun, M. Y. Mashor, H. Roseline, N. Mustafa, R. Adollah, H. Adilah, and N. M. Nasir, Image enhancement techniques using local, global, bright, dark and partial contrast stretching for acute leukemia images, in Proceedings of the World Congress on Engineering, UK, 2009, vol. 1
  5. [5] N. Otsu, A Threshold Selection Method from GrayLevel Histograms, IEEE Transactions on Systems, Man, and Cybernetics, 9(1), 1979, 62-66.
  6. [6] Soille, P., Morphological Image Analysis: Principles and Applications, Springer-Verlag, 1999, pp. 173174
  7. [7] N.H. Mahmood and M.A. Mansor, Red blood cells segmentation using Hough transform technique, Signal & Image Processing, An International Jounal (SIPIJ), vol.3,No.2, 2012

Important Links:

Go Back