Create New Account
Login
Search or Buy Articles
Browse Journals
Browse Proceedings
Submit your Paper
Submission Information
Journal Review
Recommend to Your Library
Call for Papers
EXPERIMENTAL PROFILE MODELLIl NG OF METABOLISM
Youcef Derbal
View Full Paper
References
[1] S. Dawling, N. Roodi, R.L. Mernaugh, X. Wang, and F.F. Parl, Catechol-O-methyltransferase (COMT)-mediated metabolism of catechol estrogens: comparison of wild-type and variant COMT isoforms, Cancer Research, 61(18), 2001, 6716–6722.
[2] I.H. Hanna, S. Dawling, N. Roodi, F.P. Guengerich, andF.F. Parl, Cytochrome P450 1B1 (CYP1B1) pharmacogenetics:association of polymorphisms with functional differences inestrogen hydroxylation activity, Cancer Research, 60(13), 2000, 3440–3444.
[3] J.L. Staudinger, Disease, drug metabolism, and transporter interactions, Pharmaceutical Research, 30(9), 2013, 2171–2173.
[4] U.M. Zanger and M. Schwab, Cytochrome P450 enzymesin drug metabolism: regulation of gene expression, enzymeactivities, and impact of genetic variation, Pharmacology and Therapeutics, 138(1), 2013, 103–141.
[5] P.S. Crooke, C. Justenhoven, H. Brauch, S. Dawling,N. Roodi, K.S. Higginbotham, W.D. Plummer, P.A. Schuyler,M.E. Sanders, D.L. Page, J.R. Smith, W.D. Dupont,and F.F. Parl, Estrogen metabolism and exposure in agenotypic-phenotypic model for breast cancer risk prediction, Cancer Epidemiology, Biomarkers and Prevention, 20(7), 2011, 1502–1515.
[6] F.F. Parl, K.M. Egan, C. Li, and P.S. Crooke, Estrogenexposure, metabolism, and enzyme variants in a model forbreast cancer risk prediction, Cancer Information, 7(5), 2009, 109–121.
[7] S.C. Philip, D.R. Marylyn, L.H. David, D. Sheila, R. Nady, and F.P. Fritz, Estrogens, enzyme variants, and breast cancer: a risk model, Cancer Epidemiology Biomarkers & Prevention, 15(9), 2006, 1620–1629.
[8] E.L. Cavalieri and E.G. Rogan, Unbalanced metabolism ofendogenous estrogens in the etiology and prevention of human cancer, Journal of Steroid Biochemistry and Molecular Biology, 125(3–5), 2011, 169–180.
[9] A.M. Feist and B.O. Palsson, The growing scope of applications of genome-scale metabolic reconstructions using Escherichia coli, Nature Biotechnology, 26(6), 2008, 659–667.
[10] O. Folger, L. Jerby, C. Frezza, E. Gottlieb, E. Ruppin, and T. Shlomi, Predicting selective drug targets in cancer through metabolic networks, Molecular Systems Biology, 7(501), 2011, 501–501.
[11] J.D. Orth and I. Thiele, What is flux balance analysis?, Nature Biotechnology, 28(3), 2010, 245–248.
[12] N.C. Duarte, S.A. Becker, N. Jamshidi, I. Thiele, M.L. Mo, T.D. Vo, R. Srivas, and B.O. Palsson, Global reconstruction of the human metabolic network based on genomic and bibliomic data, Proceedings of National Acadmic of Sciences: United States of America, 104(6), 2007, 1777–1782.
[13] A.M. Feist, M.J. Herrgard, I. Thiele, J.L. Reed, andB.O. Palsson, Reconstruction of biochemical networks inmicroorganisms, Nature Reviews Microbiology, 7(2), 2009,129–143.
[14] J.T. Dean, M.L. Rizk, Y. Tan, K.M. Dipple, and J.C. Liao, Ensemble modelling of hepatic fatty acid metabolism with a synthetic glyoxylate shunt, Biophysical Journal, 98(8), 2010, 1385–1395.
[15] T. Khazaei, et al., Ensemble modelling of cancer metabolism, Frontiers in Physiology, 3(5), 2012, 1–14.
[16] L.M. Tran, M.L. Rizk, and J.C. Liao, Ensemble modelling of metabolic networks, Biophysical Journal, 95(12), 2008, 5606–5617.
[17] S. Schnell and C. Mendoza, The condition for pseudo-first-order kinetics in enzymatic reactions is independent of the initial enzyme concentration, Biophysical Chemistry, 107(2), 2004, 165–174.
[18] J. Srividhya and S. Schnell, Why substrate depletion has apparent first-order kinetics in enzymatic digestion, Computational Biology and Chemistry, 30(3), 2006, 209–214.
[19] Biochemistry: the chemical reactions of living cells (San Diego, California, USA: Harcourt/Academic Press, 2001).
[20] N.W. Gaikwad, L. Yang, E.G. Rogan, and E.L. Cavalieri,Evidence for NQO2-mediated reduction of the carcinogenicestrogen ortho-quinones, Free Radical Biology and Medicine,46(2), 2009, 253–262.
[21] F.F. Parl, S. Dawling, N. Roodi, and P.S. Crooke, Estrogen metabolism and breast cancer: a risk model, Annals of the New York Academy of Sciences, 1155(2), 2009, 68–75.
[22] J.L. Bolton and G.R. Thatcher, Potential mechanisms of estrogen quinone carcinogenesis, Chemical Research in Toxicology, 21(1), 2008, 93–101.
[23] E. Cavalieri, D. Chakravarti, J. Guttenplan, E. Hart, J. Ingle, R. Jankowiak, P. Muti, E. Rogan, J. Russo, R. Santen, and T. Sutter, Catechol estrogen quinones as initiators of breast and other human cancers: implications for biomarkers of susceptibility and cancer prevention, Biochimica et Biophysica Acta, 1766(1), 2006, 63–78.
[24] D.L. Hachey, S. Dawling, N. Roodi, and F.F. Parl, Sequential action of phase I and II enzymes cytochrome p450 1B1 and glutathione S-transferase P1 in mammary estrogen metabolism, Cancer Research, 63(23), 2003, 8492–8499.
[25] M. Rahman, C. Hayes Sutter, G.L. Emmert, and T.R. Sut-ter, Regioselective 2-hydroxylation of 17β-estradiol by rat cytochrome P4501B1, Toxicology and Applied Pharmacology, 216(3), 2006, 469–478.
[26] D.E. Stack, G. Li, A. Hill, and N. Hoffman, Mechanisticinsights into the Michael addition of deoxyguanosine to catechol estrogen-3,4-quinones, Chemical Research in Toxicology, 21(7), 2008, 1415–1425.
[27] S. Dawling, D.L. Hachey, N. Roodi, and F.F. Parl, Invitro model of mammary estrogen metabolism: structuraland kinetic differences between catechol estrogens 2- and4-hydroxyestradiol, Chemical Research in Toxicology, 17(9),2004, 1258–1264.
Important Links:
Abstract
DOI:
10.2316/J.2014.210-1072
From Journal
(210) International Journal of Computational Bioscience - 2014
Go Back