UPPER LIMB MOTOR REHABILITATION INTEGRATED WITH VIDEO GAMES FOCUSING ON TRAINING FINGERS’ FINE MOVEMENTS

Chong Li, Zoltán Rusák, Yuemin Hou, Christopher Young, and Linhong Ji

References

  1. [1] K. Strong, C. Mathers, and R. Bonita, Preventing stroke: Saving lives around the world, Lancet Neurology, 6(2), 2007, 182–187.
  2. [2] T. Truelsen, B. Piechowski-Jówiak, R. Bonita, C. Mathers, J. Bogousslavsky, and G. Boysen, Stroke incidence and prevalence in Europe: A review of available data, European Journal of Neurology, 13(6), 2006, 581–598.
  3. [3] C. Gowland, Recovery of motor function following stroke: Profile and predictors, Physiotherapy Canada, 34(2), 1982, 77–84.
  4. [4] G. Kwakkel, R.C. Wagenaar, B.J. Kollen, and G.J. Lankhorst, Predicting disability in stroke: A critical review of the literature, Age and Ageing, 25(6), 1996, 479–489.
  5. [5] H.M. Feys, W.J. De Weerdt, B.E. Selz, G.A.C. Steck, R. Spichiger, L.E. Vereeck, and G.A. Van Hoydonck, Effect of a therapeutic intervention for the hemiplegic upper limb in the acute phase after stroke: A single blind, randomized, controlled multicenter trial, Stroke, 29(4), 1998, 785–792.
  6. [6] J. Whitall, S. McCombe Waller, K.H. Silver, and R.F. Macko, Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke, Stroke, 31, 2000, 2390–2395.
  7. [7] L.G. Richards, K.C. Stewart, M.L. Woodbury, C. Senesac, and J.H. Cauraugh, Movement-dependent stroke recovery: A systematic review and meta-analysis of TMS and fMRI evidence, Neuropsychologia, 46(1), 2008, 3–11.
  8. [8] J.W. Krakauer, Motor learning: Its relevance to stroke recovery and neurorehabilitation, Current Opinion in Neurology, 19(1), 2006, 84–90.
  9. [9] M. Hallett, Plasticity of the human motor cortex and recovery from stroke, Brain Research Reviews, 36(2–3), 2001, 169–174.
  10. [10] P. Langhorne, F. Coupar, and A. Pollock, Motor recovery after stroke: A systematic review, Lancet Neurology, 8(8), 2009, 741–754.
  11. [11] E.R. Kandel, J.H. Schwartz, and T.M. Jessell, Principles of Neural Science, 4th ed. (New York, NY: McGraw-Hill, 2000).
  12. [12] L. Masia, H. Krebs, P. Cappa, and N. Hogan, Design and characterization of hand module for whole-arm rehabilitation following stroke, IEEE/ASME Transactions on Mechatronics, 12(4), 2007, 399–407.
  13. [13] J. Liepert, H. Bauder, H.R. Wolfgang, W.H. Miltner, E. Taub, and C. Weiller, Treatment-induced cortical reorganization after stroke in humans, Stroke, 31(6), 2002, 1210–1216.
  14. [14] R.J. Nudo, Functional and structural plasticity in motor cortex: Implications for stroke recovery, Physical Medicine and Rehabilitation Clinics of North America, 14(Suppl. 1), 2003, S57–S76.
  15. [15] S.C. Cramer, G. Nelles, J.D. Schaechter, J.D. Kaplan, S.P. Finklestein, and B.R. Rosen, A functional MRI study of three motor tasks in the evaluation of stroke recovery, Neurorehabilitation and Neural Repair, 15(1), 2001, 1–8.
  16. [16] G.B. Prange, M.J. Jannink, C.G. Groothuis-Oudshoorn, H.J. Hermens, and M.J. Ijzerman, Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke, Journal of Rehabilation Research and Development, 43(2), 2006, 171–184.
  17. [17] G. Kwakkel, B.J. Kollen, and H.I. Krebs, Effects of robot-assisted therapy on upper limb recovery after stroke: A systematic review, Neurorehabilitation and Neural Repair, 22(2), 2008, 111–121.
  18. [18] A.A. Timmermans, H.A. Seelen, R.D. Willmann, and H. Kingma, Technology-assisted training of arm-hand skills in stroke: Concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design, Journal of Neuroengineering and Rehabilitation, 6, 2009, 1.
  19. [19] A. Alamri, M. Eid, R. Iglesias, S. Shirmohammadi, and A. El Saddik, Haptic virtual rehabilitation exercises for post-stroke diagnosis, IEEE Transactions on Instrumentation and Measurement, 57(9), 2008, 1876–1884.
  20. [20] A. Rizzo and G.J. Kim, A SWOT analysis of the field of virtual reality rehabilitation and therapy, Presence, 14(2), 2005, 119–146.
  21. [21] B. Chebbi, D. Lazaro, and P.X. Liu, A collaborative virtual haptic environment for surgical training and tele-mentoring, International Journal of Robotics and Automation, 22(1), 2007, 69–78.
  22. [22] H.I. Krebs, N. Hogan, M.L. Aisen, and B.T. Volpe, Robot-aided neurorehabilitation, IEEE Transactions on Rehabilitation Engineering, 6(1), 1998, 75–87.
  23. [23] N. Hogan, H.I. Krebs, A. Sharon, and J. Charnnarong, inventors; Massachusetts Institute of Technology, assignee; Interactive robotic therapist. United States Patent US 5466213, November 15, 1995.
  24. [24] A.M. Acosta, H.A. Dewald, and J.P.A. Dewald, Pilot study to test effectiveness of video game on reaching performance in stroke, Journal of Rehabilitation Research and Development, 48(4), 2011, 431–444.
  25. [25] M.R. Cutkosky, On grasp choice, grasp models, and the design of hands for manufacturing tasks, IEEE Transactions on Robotics and Automation, 5(3), 1989, 269–279.
  26. [26] Z. Rusák, C. Antonya, and I. Horváth, A new principle of controlling contact forces in interactive grasping simulation, Proc. 8th International Symposium on Tools and Methods of Competitive Engineering, 1, Ancona, Italy, 2010, 541–550.
  27. [27] H.I. Krebs, B. Volpe, and N. Hogan, A working model of stroke recovery from rehabilitation robotics practitioners, Journal of Neuroengineering and Rehabilitation, 25(6), 2009, 6.

Important Links:

Go Back