DYNAMIC ANALYSIS OF FIXED GEOMETRY TRACKED ROBOTS

Homayoun Rastan, Eric Lanteigne, and Atef E.F. Fahim

References

  1. [1] T. Yamamoto, Mechanical design of variable configuration tracked vehicle, Journal of Mechanical Design, 112(3), 1990, 289–294.
  2. [2] T. Yoshida, K. Nagatani, E. Koyanagi, Y. Hada, K. Ohno, S. Maeyama, H. Akiyama, K. Yoshida, and S. Tadokoro, Field experiment on multiple mobile robots conducted in an underground mall, Springer Tracks in Advanced Robotics, 62, 2010, 365–375.
  3. [3] W. Wang, Z. Du, and L. Sun, Dynamic load effect on tracked robot obstacle performance, Proc. Int. Conf. on Mechatronics, Kumamoto, Japan, May 2007, 1–6.
  4. [4] W. Wang, Z. Du, and L. Sun, Kinematics analysis for obstacle-climbing performance of a rescue robot, Proc. IEEE Int. Conf. on Robotics and Biomimetics, Sanya, China, December 2007, 1612–1617.
  5. [5] C. Beck, J.V. Miró, and G. Dissanayake, Trajectory optimisation for increased stability of mobile robots operating in uneven terrains, Proc. IEEE Int. Conf. of Control and Automation, Christchurch, NZ, December 2009, 1913–1919.
  6. [6] D.M. Helmick, S.I. Roumeliotis, M.C. McHenry, and L. Matthies, Multi-sensor, high speed autonomous stair climbing, Proc. Int. Conf. on Intelligent Robots and Systems, Lausanne, Switzerland, 2002.
  7. [7] A.I. Mourikis , N. Trawny, S.I. Roumeliotis, D.M. Helmick, and L. Matthies, Autonomous stair climbing for tracked vehicles, International Journal of Robotics Research and International Journal of Computer Vision, 26(7), 2007, 737–758.
  8. [8] C. Kim, S. Yun, K. Park, C. Choi, and S. Kim, Sensing system design and torque analysis of a haptic operated climbing robot, Proc. Int. Conf. on Intelligent Robots and Systems, 2, Sendai, Japan, 2004, 1845–1848.
  9. [9] W. Lee, S. Kang, M. Kim, and M. Park, ROBHAZ-DT3: teleoperated mobile platform with passively adaptive double-track for hazardous environment applications, Proc. Int. Conf. on Intelligent Robots and Systems, 1, Sendai, Japan, 2004.
  10. [10] S. Shoval, Stability of a multi tracked robot traveling over steep slopes, Proc. IEEE Int. Conf. on Robotics and Automation, New Orleans, LA, USA, 2004, 4701–4706.
  11. [11] J.L. Martínez, A. Mandow, J. Morales, A. Garcia-Cerezo, and S. Pedraza, Kinematic modelling of tracked vehicles by experimental identification, Proc. Int. Conf. on Intelligent Robots and Systems, 2, Sendai, Japan, 2004, 1487–1492.
  12. [12] H. Mo, H. Hung and S. Wu, Study on dynamic stability of a tracked robot climbing over an obstacle or descending stairs, Proc. IEEE Int. Workshop on Electronic Design, Test and Applications, Kuala Lumpur, Malaysia, 2006, 213–217.
  13. [13] Standard on accessible and usable buildings and facilities ICC/A117.1-2003 (New York, NY: American National Standards Institute, 2003).
  14. [14] P. Nam-Eun, P. Dong-II, and K. Yoon-Keun, Track shape for stair adaptability improvement of the rescue robot, Proc. KSME Spring Season Conference, Busan, Korea, May 2005, 859–864.
  15. [15] J.Y. Wong, Theory of ground vehicles, 3rd ed. (New York, NY: John Wiley & Sons Inc., 2001).

Important Links:

Go Back