INTELLIGENT RELAY NODE PLACEMENT IN HETEROGENEOUS WIRELESS SENSOR NETWORKS FOR ENERGY EFFICIENCY

Jose M. Lanza-Gutierrez, Juan A. Gomez-Pulido, and Miguel A. Vega-Rodriguez

References

  1. [1] J. Byun, An intelligent self-adjusting sensor for smart home services based on zigbee communications, IEEE Transactions on Consumer Electronics, 58, 2012, 794–802.
  2. [2] X. Li, R. Falcon, A. Nayak, and I. Stojmenovic, Servicing wireless sensor networks by mobile robots, Communications Magazine, IEEE, 50(7), 2012, 147–154.
  3. [3] M.R. Garey and D.S. Johnson, Computers and intractability: A guide to the theory of NP-completeness (San Francisco, California (EEUU): W.H. Freeman & Co., 1979).
  4. [4] X. Cheng, B. Narahari, R. Simha, M.X. Cheng, and D. Liu, Strong minimum energy topology in wireless sensor networks: Np-completeness and heuristics, IEEE Transactions on Mobile Computing, 2, 2003, 248–256.
  5. [5] A.E.F. Clementi, P. Penna, and R. Silvestri, Hardness results for the power range assignment problem in packet radio networks, Proc. of RANDOM-APPROX, 1671, 1999, 197–208.
  6. [6] M. Cardei and D.-Z. Du, Improving wireless sensor network lifetime through power aware organization, Wireless Networks, 11, 2005, 333–340.
  7. [7] J.-H. Chang and L. Tassiulas, Maximum lifetime routing in wireless sensor networks, IEEE/ACM Transactions on Networking, 12, 2004, 609–619.
  8. [8] L. Liu, B. Hu, and L. Li, Energy conservation algorithms for maintaining coverage and connectivity in wireless sensor networks, IET Communications, 4, 2010, 786–800.
  9. [9] F.V.C. Martins, E.G. Carrano, E.F. Wanner, R.H.C. Takahashi, and G.R. Mateus, A hybrid multiobjective evolutionary approach for improving the performance of wireless sensor networks, IEEE Sensors Journal, 11, 2011, 545–554.
  10. [10] X.-M. Hu, J. Zhang, Y. Yu, H.S.-H. Chung, Y.-L. Li, Y.-H. Shi, and X.-N. Luo, Hybrid genetic algorithm using a forward encoding scheme for lifetime maximization of wireless sensor networks, IEEE Transactions on Evolutionary Computation, 14, 2010, 766–781.
  11. [11] A. Konstantinidis and K. Yang, Multi-objective energy-efficient dense deployment in wireless sensor networks using a hybrid problem-specific MOEA/D, Applied Soft Computing, 11, 2011, 4117–4134.
  12. [12] A. Konstantinidis, K. Yang, and Q. Zhang, An evolutionary algorithm to a multi-objective deployment and power assignment problem in wireless sensor networks, Proc. of IEEE GLOBECOM, 2008, 1–6.
  13. [13] A. Konstantinidis and K. Yang, Multi-objective k-connected deployment and power assignment in WSNs using a problem-specific constrained evolutionary algorithm based on decomposition, Computer Communications, 34, 2011, 83–98.
  14. [14] M. Le Berre, F. Hnaien, and H. Snoussi, Multi-objective optimization in wireless sensors networks, Proc. of ICM, 1, 2011, 1–4.
  15. [15] J. Jia, J. Chen, G. Chang, and Z. Tan, Energy efficient coverage control in wireless sensor networks based on multi-objective genetic algorithm, Journal of Computers and Mathematics with Applications, 57, 2009, 1756–1766.
  16. [16] J. Jia, J. Chen, G. Chang, Y. Wen, and J. Song, Multi-objective optimization for coverage control in wireless sensor network with adjustable sensing radius, Journal of Computers and Mathematics with Applications, 57, 2009, 1767–1775.
  17. [17] X. Han, X. Cao, E.L. Lloyd, and C.-C. Shen, Fault-tolerant relay node placement in heterogeneous wireless sensor networks, IEEE Transactions on Mobile Computing, 9, 2010, 643–656.
  18. [18] K. Xu, H. Hassanein, G. Takahara, and Q. Wang, Relay node deployment strategies in heterogeneous wireless sensor networks, IEEE Transactions on Mobile Computing, 9, 2010, 145–159.
  19. [19] Q. Wang, K. Xu, G. Takahara, and H. Hassanein, Device placement for heterogeneous wireless sensor networks: Minimum cost with lifetime constraints, IEEE Transactions on Wireless Communications, 6, 2007, 2444–2453.
  20. [20] A.J. Perez, M.A. Labrador, and P.M. Wightman, A multi-objective approach to the relay placement problem in WSNs, Proc. of IEEE WCNC, 1, 2011, 475–480.
  21. [21] C. Zhao and P. Chen, Particle swarm optimization for optimal deployment of relay nodes in hybrid sensor networks, Proc. of IEEE CEC, 1, 2007, 3316–3320.
  22. [22] J.M. Lanza-Gutierrez, J.A. Gomez-Pulido, M.A. Vega-Rodriguez, and J.M. Sanchez-Perez, Relay node positioning in wireless sensor networks by means of evolutionary techniques, Autonomous and Intelligent Systems, Lecture Notes in Computer Science, 7236, 2012, 18–25.
  23. [23] J.M. Lanza-Gutierrez, J.A. Gomez-Pulido, M.A. Vega-Rodriguez, and J.M. Sanchez-Perez, Instance sets for optimization in wireless sensor networks, http://arco.unex.es/wsnopt, 2011.
  24. [24] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction to algorithms, 3rd ed. (Cambridge, Massachusetts (EEUU): The MIT Press, 2009).
  25. [25] W. Ye, J. Heidemann, and D. Estrin, An energy-efficient MAC protocol for wireless sensor networks, Proc. of INFOCOM, 3, 2002, 1567–1576.
  26. [26] B. Wang, Coverage problems in sensor networks: A survey, ACM Computer Survey, 43, 2011, 32–53.
  27. [27] T. Back, Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms (New York, NY (EEUU): Oxford University Press, 1996).
  28. [28] E. Zitzler, Evolutionary algorithms for multiobjective optimization: Methods and applications, Doctoral thesis ETH NO. 13398, Zurich: Swiss Federal Institute of Technology(ETH), (Aachen, Germany: Shaker Verlag, 1999).
  29. [29] E. Zitzler and L. Thiele, Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach, IEEE Transactions on Evolutionary Computation, 3, 1999, 257–271.
  30. [30] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, A fast elitist multi-objective genetic algorithm: NSGA-2, IEEE Transactions on Evolutionary Computation, 6, 2000, 182–197.
  31. [31] E. Zitzler, M. Laumanns, and L. Thiele, SPEA2: Improving the strength Pareto evolutionary algorithm, Technical report, Computer Engineering and Networks Laboratory (TIK), ETH Zurich, 2001.
  32. [32] D. Karaboga, An idea based on honey bee swarm for numerical optimization, Technical report, Erciyes University, 2005.
  33. [33] D. Karaboga and B. Basturk, A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm, Journal of Global Optimization, 39, 2007, 459–471.
  34. [34] J.M. Lanza-Gutierrez, J.A. Gomez-Pulido, M.A. Vega-Rodriguez, and J.M. Sanchez-Perez, A multi-objective network design for real traffic models of the internet by means of a parallel framework for solving np-hard problems, NaBIC, 2011, 137–142.
  35. [35] W.L. Hays and R.L. Winkler, Statistics: Probability, inference, and decision (New York, NY (EEUU): Holt, Rinehart and Winston, 1970).
  36. [36] S.S. Shapiro and M.B. Wilk, An analysis of variance test for normality (complete samples), Biometrika, 52, 1965, 591–611.
  37. [37] H.W. Lilliefors, On the Kolmogorov–Smirnov test for normality with mean and variance unknown, Journal of the American Statistical Association, 62, 1967, 399–402.
  38. [38] W.H. Kruskal and W.A. Wallis, Use of ranks in one-criterion variance analysis, Journal of the American Statistical Association, 47, 1952, 583–621.
  39. [39] H.B. Mann and D.R. Whitney, On a test of whether one of two random variables is stochastically larger than the other, Annals of Mathematical Statistics, 1, 1947, 50–60.
  40. [40] C. Fonseca, J. Knowles, L. Thiele, and E. Zitzler, Performance assessment tool suite, http://www.tik.ee.ethz.ch/pisa/?page=assessment.php.

Important Links:

Go Back