EARLY TERMINATION FOR RESIDUAL QUADTREE DECISION-MAKING IN HEVC

Shen-Chuan Tai, Chia-Ying Chang, Bo-Jhih Chen, Yu-Yi Liao, and Yung-Gi Wu

References

  1. [1] D. Marpe, H. Schwarz, S. Bosse, B. Bross, P. Helle, T. Hinz, H. Kirchhoffer, H. Lakshman, T. Nguyen, S. Oudin, M. Siekmann, K. Suhring, M. Winken, and T. Wiegand, Video compression using nested quadtree structures, leaf merging, and improved techniques for motion representation and entropy coding, IEEE Transactions on Circuits and Systems for Video Technology, 20, 2010, 1676–1687.
  2. [2] W.-J. Han, J. Min, I.-K. Kim, E. Alshina, A. Alshin, T.Lee, J. Chen, V. Seregin, S. Lee, Y.M. Hong, M.-S. Cheon,N. Shlyakhov, K. McCann, T. Davies, and J.-H. Park,Improved video compression efficiency through flexible unitrepresentation and corresponding extension of coding tools,31 IEEE Transactions on Circuits and Systems for Video Technology, 20, 2010, 1709–1720.
  3. [3] K. Ugur, K. Andersson, A. Fuldseth, G. Bjontegaard, L.Endresen, J. Lainema, A. Hallapuro, J. Ridge, D. Rusanovskyy, C. Zhang, A. Norkin, C. Priddle, T. Rusert, J. Samuelsson, R. Sjoberg, and Z. Wu, High performance, low complexity video coding and the emerging HEVC standard, IEEE Transactions on Circuits and Systems for Video Technology, 20, 2010, 1688–1697.
  4. [4] Advanced video coding for generic audiovisual services, ITU-T Rec. H. 264-ISO/IEC 14496-10 AVC, 2007.
  5. [5] B. Li, S.G. J., and J. Xu, Comparison of compression performance of HEVC working draft 4 with AVC high profile,JCTVC-G399, 2011.
  6. [6] K. MaCann, B. Bross, W.-J. Han, S. Sekiguchi, and G.J.Sullivan, High Efficiency Video Coding (HEVC) Test Model 5(HM 5) Encoder Description, JCTVC-G1102, 2012.
  7. [7] HM reference software 5.0, 2011.
  8. [8] F. Bossen, Common HM test conditions and software reference configurations, JCTVC-G1200, 2012.
  9. [9] Y.H. Tan, C. Yeo, H.L. Tan, and Z. Li, On residual quad-tree coding in HEVC, IEEE 13th Int. Workshop on Multimedia Signal Processing (MMSP), 2011, 1–4.
  10. [10] S.-W. Teng, H.-M. Hang, and Y.-F. Chen, Fast mode decision algorithm for residual quadtree coding in HEVC, IEEE Visual Communications and Image Processing (VCIP), 2011, 1–4.
  11. [11] L.A. Sousa, General method for eliminating redundant computations in video coding, Electronics Letters, 36, 2000, 306–307.
  12. [12] Y.H. Moon, G.Y. Kim, and J.H. Kim, An improved earlydetection algorithm for all-zero blocks in H.264 video encoding, IEEE Transactions on Circuits and Systems for Video Technology, 15, 2005, 1053–1057.
  13. [13] Z. Xie, Y. Liu, J. Liu, and T. Yang, A general method for detecting all-zero blocks prior to DCT and quantization, IEEE Transactions on Circuits and Systems for Video Technology, 17, 2007, 237–241.
  14. [14] H. Wang and S. Kwong, Hybrid model to detect zero quantized DCT coefficients in H.264, IEEE Transactions on Multimedia, 9, 2007, 728–735.
  15. [15] H. Wang and S. Kwong, Prediction of zero quantized DCTcoefficients in H.264/AVC using Hadamard transformed infor-mation, IEEE Transactions on Circuits and Systems for VideoTechnology, 18, 2008, 510–515.
  16. [16] M. Zhang, T. Zhou, and W. Wang, Adaptive method for early detecting zero quantized DCT coefficients in H.264/AVC video encoding, IEEE Transactions on Circuits and Systems for Video Technology, 19, 2009, 103–107.
  17. [17] T. Zhou, M. Zhang, and Z. Xiong, Generalised Gaussiandistribution to early detect zero quantised discrete cosinetransform coefficients in H.264/AVC video encoding, IETImage Processing, 4, 2010, 473–485.
  18. [18] J. Li, W. Chen, M. Gabbouj, J. Takala, and H. Chen, Prediction of discrete cosine transformed coefficients in resized pixel blocks, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2, 2011, 1045–1048.
  19. [19] A. Fuldseth, G. Bjøntegaard, M. Sadafale, and M.V. Budagavi, Transform design for HEVC with 16 bit intermediate data representation, JCTVC-E243, 2011.
  20. [20] J. Xie and L.-T. Chia, Study on the distribution of DCT residues and its application to R-D analysis of video coding, Journal of Visual Communication and Image Representation, 19, 2008, 411–425.
  21. [21] H.-M. Hang and J.-J. Chen, Source model for transform video coder and its application – Part I: Fundamental theory, IEEE Transactions on Circuits and Systems for Video Technology, 1997, 287–298.
  22. [22] S. Ma, Rate-distortion analysis for H.264/AVC video coding and its application to rate control, IEEE Transactions on Circuits and Systems for Video Technology, 15, 2005, 1533–1544.
  23. [23] E.Y. Lam and J.W. Goodman, A mathematical analysis of the DCT coefficient distributions for images, IEEE Transactions on Image Processing, 9, 2000, 1661–1666.
  24. [24] R. Reininger and J. Gibson, Distribution of the two dimensional DCT coefficients for images, IEEE Transactions onCommunications, C, 1983, 835–839.
  25. [25] Y. Altunbasak and N. Kamaci, An analysis of the DCT coefficient distribution with the H.264 video coder, International Conference on Acoustics, Speech, and Signal Processing, 3, 2004, 177–180.
  26. [26] T. Eude, H. Cherifi, and R. Grisel, Proceedings of TEN-CON’94 – 1994 IEEE Region 10’s 9th Annual InternationalConference on Frontiers of Computer Technology, 1, 1994,427–430.
  27. [27] T. Eude, R. Grisel, H. Cherifi, and R. Debrie, On the distribution of the DCT coefficients, ICASSP, 1994, 365–368.
  28. [28] G. Bjøntegaard, Calculation of average PSNR differences between RD-curves, ITU-T VCEG-M33, 2001.
  29. [29] G. Bjøntegaard, Improvements of the BD-PSNR model, VCEG-AI11, 2008.

Important Links:

Go Back