Ho P.H. Anh
[1] P. Carbonell, Z.P. Jiang, and D.W. Repperger, Nonlinear control of a pneumatic muscle actuator: Back-stepping versus sliding-mode, Proc. IEEE Int. Conf. on Control Applications, Mexico City, Mexico, 2000, 167–172. [2] M. Folgheraiter, G. Gini, M. Perkowski, and M. Pivtoraiko, Adaptive reflex control for an artificial hand, Proc. SYROCO 2003 Symp. on Robot Control, Holliday Inn, Wroclaw, Poland, 2003. [3] V. Balasubramanian and K.S. Rattan, Feed-forward control of a non-linear pneumatic muscle system using fuzzy logic, IEEE International Conference on Fuzzy Systems, 1, 2003, 272–277. [4] S.Q. Xie and P.K. Jamwal, An iterative fuzzy controller for pneumatic muscle driven rehabilitation robot, Expert Systems with Applications, 38 (7), 2011, 8128–8137. [5] P.K. Jamwal, S.Q. Xie, and S. Quigley, Robust disturbance observer-based adaptive fuzzy controller for pneumatic muscle actuators, Proc. ASME Design Engineering Technical Conf. (Parts A AND B), 2011, 795–804. [6] H.P.H. Anh and K.K. Ahn, Identification of the pneumatic artificial muscle manipulators by MGA-based nonlinear NARX fuzzy model, IFAC Journal of Mechatronics, 19(1), 2009, 106–133. [7] H.P.H. Anh, K.K. Ahn, and J.I. Yoon, Inverse model identification of 2-axes pneumatic artificial muscle (PAM) robot arm using double NARX Fuzzy Model and genetic algorithm, 2008 Second Int. Conf. on Communications and Electronics, IEEE-ICCE08, Hoi An, Viet Nam. [8] H.P.H. Anh and K.K. Ahn, Design and implementation of an adaptive recurrent neural network (ARNN) controller of a pneumatic artificial muscle (PAM) manipulator, IFAC Journal of Mechatronics, 19(6), 2009, 816–828. [9] Y. Wang, Z. Shi, J. Wang, and R.P.S. Han, Study of smooth and accurate position controls of pneumatic artificial muscle actuators for robotic arms, Advanced Materials Research, 317–319, 2011, 799–806. [10] M.J. Er and S.Q. Wu, A fast learning algorithm for parsimonious fuzzy neural systems, Fuzzy Sets and Systems, 126(3), 2002, 61–75. [11] K.K. Ahn and H.P.H. Anh, A new approach of modeling and identification of the pneumatic artificial muscle (PAM) manipulator based on neural network, IMechE, Part I: Journal of Systems and Control Engineering, 221(18), 2007, 1101–1122. [12] G.S. Ng, F. Liu, T.F. Loh, and C. Quek, A novel brain-inspired neuro-fuzzy hybrid system for artificial ventilation modeling, Expert Systems with Applications, 39(15), 2012, 11808–11817. [13] H.P.H. Anh, Online tuning gain scheduling MIMO neural PID control of the 2-axes pneumatic artificial muscle (PAM) robot arm, Journal of Expert Systems with Applications, 37(9), 2010, 6547–6560. [14] H.P.H. Anh and K.K. Ahn, Hybrid control of a pneumatic artificial muscle (PAM) robot arm using an inverse NARX fuzzy model, International Scientific Journal Engineering Applications of Artificial Intelligence (EAAI Journal ), 24(4), 2011, 697–716. [15] Z.-g. Su, P.-h. Wang, J. Shen, Y.-g. Li, Y.-f. Zhang, and E.-j. Hu, Automatic fuzzy partitioning approach using variable string length artificial bee colony (VABC) algorithm, Applied Soft Computing, 12(11), 2012, 3421–3441. [16] B.M. Al-Hadithi, A. Jiménez, and F. Matía, A new approach to fuzzy estimation of Takagi–Sugeno model and its applications to optimal control for nonlinear systems, Applied Soft Computing, 12(1), 2012, 280–290. [17] K.K. Ahn and H.P.H. Anh, Inverse double NARX fuzzy modeling for system identification, IEEE/ASME Journal of Mechatronics, 15(1), 2010, 136–148. [18] H.P.H. Anh, Implementation of Fuzzy NARX IMC PID control of PAM robot arm using Modified Genetic Algorithms, 2011 IEEE 5th Int. Workshop on Genetic and Evolutionary Fuzzy Systems (GEFS ), 2011. [19] A. Datta and J. Ochoa, Adaptive internal model control: Design and stability analysis, Automatica, 32 (2), 1996, 261–266. [20] I. Rivals and L. Personnaz, Nonlinear internal model control using neural networks: Application to processes with delay and design issues, IEEE Transactions on Neural Networks, 11(1), 2000, 80–90. [21] J. Sousa, R. Babuska, and H. Verbruggen, Internal model control with a fuzzy model: Application to an air-conditioning system, Proc. Sixth IEEE Int. Conf. on Fuzzy Systems, 1, 1997, 207–212. [22] W.F. Xie and A.B. Rad, Fuzzy adaptive internal model control, IEEE Transactions on Industrial Electronics, 47(1), 2000, 193–202. [23] X. Wen, J. Zhang, Z. Zhao, and L. Liu, Multi-model neural network IMC, Proc. of 2004 Int. Conf. on Machine Learning and Cybernetics, 6, 2004, 3370–3374. [24] C. Yu, J. Zhu, and Z. Sun, Nonlinear adaptive internal model control using neural networks for tilt rotor aircraft platform, IEEE Mid-Summer Workshop on Soft Computing in Industrial Applications, Helsinki University of Technology, Espoo, Finland, June 2005, 535–536. [25] J. Kennedy and R. Eberhart, Particle swarm optimization, Proc. IEEE Int. Conf. on Neural Network, 4, 1995, 1942–1948. [26] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi, A particle swarm optimization for reactive power and voltage control considering voltage security assessment, IEEE Transactions on Power Systems, 15(4), 2000, 1232–1239. [27] Z.L. Gaing, A particle swarm optimization approach for optimum design of PID controller in AVR system, IEEE Transactions on Energy Conversion, 19(2), 2004, 384–391. [28] D. Chen, J. Wang, F. Zou, H. Zhang, and W. Hou, Linguistic fuzzy model identification based on PSO with different length of particles, Applied Soft Computing, 12(11), 2012, 3390–3400. [29] N. Doan Ngoc Chi, T. Dinh Quang, J.I. Yoon, and K.K. Ahn, Identification of ionic polymer metal composite actuator employing fuzzy NARX model and particle swam optimization, Int. Conf. on Control, Automation and Systems, Busan-Korea, 2011, 1857–1861.
Important Links:
Go Back