Sélim Bensalah, Sylvie Sevestre-Ghalila, and Christine Chappard


  1. [1] R.W. McCalden, J.A. McGeough, M.B. Barker, and C.M.Court-Brown, Age related changes in the tensile properties of cortical bone. The relative importance of changes in porosity, mineralization and microstructure, Journal of Bone Joint Surgery American, 75, 1993, 1193–1205.
  2. [2] H.K. Datta, W.F. Ng, J.A. Walker, S.P. Tuck, and S.S.Varanasi, The cell biology of bone metabolism, Journal ofClinical Pathology, 61, 2007, 577–587.
  3. [3] G.J. Tortora, Principles of human anatomy (New York: Wiley, 2002).
  4. [4] G.R. Jordan, N. Loveridge, K.L. Bell, J. Power, N. Rushton, and J. Reeve, Spacial clustering of remodeling osteons in the femoral neck cortex: a cause of weakness in hip fracture? Bone, 26, 2000, 305–313.
  5. [5] D.M.L. Cooper, A. Turinsky, C. Sensen, and B. Hallgrimsson, Effect of voxel size on 3D micro-CT analysis of cortical bone porosity, Calcified Tissue International, 80, 2007, 211–219.
  6. [6] A. Parfitt, Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone, Journal of Cellular Biochemistry, 55, 1994, 273–286.
  7. [7] V. Bousson, A. Meunier, C. Bergot, E. Vicaut, M. Rocha, M. Morais, A. Laval-Jeantet, and J. Laredo, Distribution of intracortical porosity in human midfemoral cortex by age and gender, Journal of Bone and Mineral Research, 16, 2001, 1308–1317.
  8. [8] C. Chappard, S. Bensalah, C. Oliver, J.P. Gouttenoire, A. Marchadier, C.L. Benhamou, and F. Peyrin, 3D characterization of pores in cortical of elderly human femur in different locations by synchrotron micro-computed tomography images, Osteoporois International, 24, 2013, 1023–1033.
  9. [9] D.M.L. Cooper, A.M.L. Turinsky, C.W. Jensen, and B. Hall-grimsson, Quantitative 3D analysis of the canal network in cortical bone by microcomputed tomography, Anatomical Record, 274, 2003, 169–179.
  10. [10] K.L. Bell, N. Loveridge, J. Power, and J. Reeve, Intracapsular hip fracture: increased cortical remodeling in the thinned and porous anterior region of the femoral neck, Osteoporosis International, 10, 1999, 248–257.
  11. [11] R. M¨uller, Hierarchical microimaging of bone structure and function, Nature Reviews Rheumatology, 5, 2009, 373–381.
  12. [12] N.J. Wachter, P. Augat, G.D. Krischak, M. Mensel, L. Kinzl, and L. Claes, Prediction of cortical bone porosity in vitro by microcomputed tomography, Calcified Tissue International, 68, 2001, 38–42.
  13. [13] A. Basillais, S. Bensamoun, C. Chappard, B. Brunet-Imbault, G. Lemineur, M.C. Ilharreborde , Ho-Ba-Tho, and C.L. Ben-hamou, Three-dimensional characterization of cortical bone microstructure by microcomputed tomography: validation with ultrasonic and microscopic measurements, Journal Orthopaedic Science, 12, 2007, 141–148.
  14. [14] V. Bousson, F. Peyrin, C. Bergot, M. Haussard, A. Sautet, and A. Laredo, Cortical bone in the human femoral neck: three dimensional appearance and porosity using synchrotron radiation, Journal of Bone and Mineral Research, 19, 2004, 794–801.
  15. [15] F. Peyrin, M. Salom´e, S. Nuzzo, P. Cloetens, A.M. Laval-Jeantet, and J. Baruchel, Perspectives in three-dimensional analysis of bone samples using synchrotron radiation microtomography, Cell and Molecular Biology, 46, 2000, 1089–1102.
  16. [16] M. Salom´e, F. Peyrin, P. Cloetens, C. Odet, A.M. Laval-Jeantet, J. Baruchel, and P. Spanne, A synchrotron radiation microtomography system for the analysis of trabecular bone samples, Medical Physics, 26, 1999, 2194–2204.
  17. [17] N. Otsu, A threshold selection method from gray-level histograms, IEEE Transaction on Systems Man and Cybernetics SMC-9, 1979, 62–66.
  18. [18] E. Rahtu, M. Salo, and J. Heikkil¨a, A new convexity measure based on a probabilistic interpretation of images, IEEE Transaction on Pattern Analysis and Machine Intelligence, 28, 2006, 1501–1512.
  19. [19] R. Sedgewick, Algorithms in C, 3rd ed. (Boston, MA: Addison-Wesley, 1998), 11–20.
  20. [20] T. Hildebrand and P. Ruegsegger, A new method for themodel-independent assessment of thickness in three dimensional images, Journal of Microscopy, 185, 1997, 67–75.
  21. [21] W. Lorensen and H. Cline, Marching cubes: a high resolution 3D surface construction algorithm, Computational Graphics, 21, 1987, 163–169.
  22. [22] D. Ulrich, B.V. Rietbergen, A. Laib, and P. Ruegsegger, The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone, Bone, 25, 1999, 55–60.
  23. [23] T. Harrigan and R. Mann, Characterization of microstructural anisotropy in orthotropic materials using second rank tensor, Journal of Materials Science, 19, 1984, 761–767.
  24. [24] D.M.L. Cooper, C.D.L. Thomas, J.G. Clement, A.L. Turinsky, C.W. Sensen, and B. Hallgrimsson, Age-dependent change in the 3D structure of cortical porosity at the human femoral midshaft, Bone, 40, 2007, 957–965.
  25. [25] A.M. Parfitt, M.K. Drezner, F.H. Glorieux, J.A. Kanis, H. Malluche, P.J. Meunier, S.M. Ott, and R.R. Recker, Bonehistomorphometry: standardization of nomenclature, symbolsand units, Journal of Bone and Mineral Research, 2, 1987,595–610.

Important Links:

Go Back