A WATERMARKING SCHEME BASED ON COMPRESSIVE SENSING AND BREGMAN ITERATION1

Guoming Chen, Qiang Chen, Dong Zhang, and Yiqun Chen

References

  1. [1] E. Candes, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Transactions on Information Theory, 52, 2006, 489–509.
  2. [2] D. Donoho, Compressed sensing, IEEE Transactions on Information Theory, 52, 2006, 1289–1306.
  3. [3] W. Yin, S. Osher, J. Darbon, and D. Goldfarb, Bregman iterative algorithms for compressed sensing and related problems, SIAM Journal on Imaging Sciences, 1 , 2008, 143–168.
  4. [4] S. Osher, Y. Mao, B. Dong, and W. Yin, Fast linearized Bregman iteration for compressive sensing and sparse denoising, Communications in Mathematical Sciences, 8, 2010, 93–111.
  5. [5] T. Goldstein and S. Osher, The split Bregman method for L1-regularized problems, SIAM Journal on Imaging Sciences, 2, 2009, 323–343.
  6. [6] J.F. Cai, S. Osher, and Z. Shen, Linearized Bregman iterations for frame-based image deblurring, SIAM Journal on Imaging Sciences, 2, 2009, 226–252.
  7. [7] A.K. Gupta and M.S. Raval, Robust and secure watermarking scheme based on singular values replacement, Academy Proceedings in Engineering Sciences, 37, 2012, 425–440.
  8. [8] M.W. Fakhr, Sparse watermark embedding and recovery using compressed sensing framework for audio signals, Int. Conf. on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC), Sanya, China, 2012, 535–539.
  9. [9] G. Valenzise, M. Tagliasacchi, S. Tubaro, G. Cancelli, and M. Barni, A compressive-sensing based watermarking scheme for sparse image tampering identification, Int. Conf. on Image, Cairo, Egypt, 2009, 265–1268.
  10. [10] B. Vasic, Simplification resilient LDPC-coded sparse-QIM watermarking for 3D meshes, IEEE Transactions on Multimedia, 1, 2013, 1–34.
  11. [11] M. Sheikh and R.G. Baraniuk, Blind error-free detection of transform-domain watermarks, Int. Conf. on Image Processing, San Antonio, TX, USA, 2007, 453–456.
  12. [12] M. Yamac, C. Dikici, and B. Sankur, Robust Watermarking of Compressive Sensed Signals, Signal Processing and Communications Applications Conf, Haspolat, Turkey, 2013, 24–26.
  13. [13] Y. Lei, J.P. Barbot, Z. Gang, and S. Hong, Compressive sensing with chaotic sequence, IEEE Signal Processing Letters, 17, 2010, 731–734.
  14. [14] M. Frunzete, Y. Lei, J. Barbot, and A. Vlad, Compressive sensing matrix designed by tent map, for secure data transmission, Signal Processing Algorithms, Architectures, Arrangements, and Applications Conf. Proc, Poznan, Poland, 2011, 1–6.
  15. [15] Ivo Petras, Fractional-order nonlinear systems: modeling, analysis and simulation, ed. I. Petras, Nonlinear Physical Science (Berlin, Heidelberg: Springer Berlin Heidelberg, 2011), 1. ISBN: 978-3-642-18100-9.
  16. [16] J.A. Tropp and A.C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit, IEEE Transactions on Information Theory, 53, 2007, 4655–4666.

Important Links:

Go Back