Rahib H. Abiyev, Nurullah Akkaya, Ersin Aytac, and Dogan Ibrahim


  1. [1] J. Borenstein, H.R. Everett, and L. Feng, Navigating mobile robots: systems and techniques (Natick, MA: A. K. Peters, Ltd., 1996).
  2. [2] B. Damas and P. Lima, Stochastic discrete event model of a multi-robot team playing an adversarial game, Proc. IAV 2004 – 5th IFAC/EURON Symposium on Intelligent Autonomous Vehicles, Lisbon, Portugal, 2004.
  3. [3] A.C. Dom´ınguez-Brito, M. Andersson, and H.I. Christensen, A software architecture for programming robotic systems based on the discrete event system paradigm, Technical Report, Centre for Autonomous Systems, KTH, 2000.
  4. [4] E.P. Dadios and S.H. Park, Real time robot soccer game event detection using finite state machines with multiple fuzzy logic probability evaluators, International Journal of Computer Games Technology, 2009, 2009, 5:1–5:12.
  5. [5] H. Costelha and P. Lima, Modelling, analysis and execution of robotic tasks using Petri nets, IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2007, IROS 2007, 29 November 2007, 1449–1454.
  6. [6] D. Milutinovic and P. Lima, Petri net models of robotic tasks, Proc. IEEE Int. Conf. on Robotics and Automation, 4, 2002, 4059–4064.
  7. [7] M.J. Mataric, Behavior-based control: examples from navigation, learning, and group behavior, Journal of Experimental and Theoretical Artificial Intelligence, 9, 1997, 323–336.
  8. [8] M. Mataric, Behavior-based control: main properties and implications, Proc. IEEE Int. Conf. on Robotics and Automation, Workshop on Architectures for Intelligent Control Systems, 1992, 46–54.
  9. [9] C.-U. Lim, R. Baumgarten, and S. Colton, Evolving behaviour trees for the commercial game DEFCON, Proc. Int. Conf. on Applications of Evolutionary Computation – Volume Part I, EvoApplicatons’10, Lecture Notes in Computer Science (Berlin, Heidelberg: Springer-Verlag, 2010), 100–110.
  10. [10] G. Neto, H. Costelha, and P. Lima, Topological navigation in configuration space applied to soccer robots, Robocup 2003, LNAI (Berlin Heidelberg: Springer-Verlag, 2004).
  11. [11] N. Kurihara, R. Hayashi, H. Fujii, D. Sakai, and K. Yoshida, Intelligent control of autonomous mobile soccer robot adapting to dynamic environment, RoboCup 2003, LNAI (Berlin Heidelberg: Springer-Verlag, 2004).
  12. [12] J. Borenstein and Y. Koren, Real-time obstacle avoidance for fast mobile robots in cluttered environments, Proc. IEEE Int. Conf. on Robotics and Automation, 1, 1990, 572–577.
  13. [13] J. Borenstein, Y. Koren, and S. Member, The vector field histogram – fast obstacle avoidance for mobile robots, IEEE Journal of Robotics and Automation, 7, 1991, 278–288.
  14. [14] I. Ulrich and J. Borenstein, Vfh+: reliable obstacle avoidance for fast mobile robots, Proc. of the 1998 IEEE Int. Conf. on Robotics and Automation, Leuven, Belgium, 2, May 16–21, 1998, 1572–1577.
  15. [15] D. Fox, W. Burgard, and S. Thrun, The dynamic window approach to collision avoidance, IEEE Robotics Automation Magazine, 4, 1997, 23–33.
  16. [16] M.Y. Ibrahim, Mobile robot navigation in a cluttered environment using free space attraction “agoraphilic algorithm, Proc. 9th Int. Conf. on Computers and Industrial Engineering, 1, 2002, 377–382.
  17. [17] K. Fujimura, Motion planning in dynamic environments (Secaucus, NJ: Springer-Verlag New York, Inc., 1992).
  18. [18] M.Y. Ibrahim and A. Fernmdes, Study on mobile robot navigation techniques, IEEE Int. Conf. on Industrial Technology, 1, 2004, 230–236.
  19. [19] A. Stentz and M. Hebert, A complete navigation system for goal acquisition in unknown environments, Autonomous Robots, 2, 1995, 127–145.
  20. [20] J.J. Kuffner and S. LaValle, RRT-connect: an efficient approach to single-query path planning, Proc. IEEE Int. Conf. on Robotics and Automation, 2, 2000, 995–1001.
  21. [21] S.M. LaValle and J.J. Kuffner, Randomized kinodynamic planning, International Journal of Robotics Research, 20(5), 2001, 378–400.
  22. [22] S.M. LaValle, Planning algorithms (Cambridge, UK: Cambridge University Press, 2006), available at, 842.
  23. [23] M. Kalisiak and M. van de Panne, RRT-Blossom: RRT with a local flood-fill behavior, Proc. of the 2006 IEEE Int. Conf. on Robotics and Automation, Orlando, Florida, May 2006, 1237–1242.
  24. [24] P. Hart, N. Nilsson, and B. Raphael, A formal basis for the heuristic determination of minimum cost paths, IEEE Transactions on Systems Science and Cybernetics, 4, 1968, 100–107.
  25. [25] R. Abiyev, D. Ibrahim, and B. Erin, EDUrobot: an educational computer simulation programme for navigation of mobile robots in the presence of obstacles, International Journal of Engineering Education, 26(1), 2010, 18–29.
  26. [26] R. Abiyev, D. Ibrahim, and B. Erin, Navigation of mobile robots in the presence of obstacles, Advanced Engineering Software, 41, 2010, 1179–1186.
  27. [27] E. Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik, 1, 1959, 269–271.
  28. [28] S. Tan, S.X. Yang, and A. Zhu, A novel GA-based fuzzy controller for mobile robots in dynamic environments with moving obstacles, International Journal of Robotics and Automation, 26(2), 2011.
  29. [29] S.H. Sadati, K. Alipour, and M. Behroozi, A combination of neural network and RITZ method for robust motion planning of mobile robots along calculated modular paths, International Journal of Robotics Automation, 23(3), 2008, 187–198.
  30. [30] K.H. Sedighi, T.W. Manikas, K. Ashenayi, and R.L. Wainwright, A genetic algorithm for autonomous navigation using variable-monotone paths, International Journal of Robotics and Automation, 24(4), 2009, 367–373.
  31. [31] C. Son, Intelligent robotic path finding methodologies with fuzzy/crisp entropies and learning, International Journal of Robotics and Automation, 26(3), 2011, 323–336.
  32. [32] V.M. Ganapathy, S. Parasuraman, and B. Shirinzadeh, Behavior based mobile robot navigation by AI techniques: behavior selection and resolving behavior conflicts using alpha level fuzzy inference system, International Journal of Automation, Robotics and Autonomous Systems, 5(1), 2006.
  33. [33] J.A. Fernandez-Leon, G.G. Acosta, and M.A. Mayosky, Behavioral control through evolutionary neurocontrollers for autonomous mobile robot navigation, Robotics and Autonomous Systems, 57, 2009, 411–419.
  34. [34] J. Bruce and M. Veloso, Real-time randomized path planning for robot navigation, Int. Conf. on Intelligent Robots and Systems, 3, 2002, 2383–2388.
  35. [35] S. Karaman and E. Frazzoli, Incremental sampling-based algorithms for optimal motion planning, Proc. Robotics: Science and Systems, Zaragoza, Spain, June 2010.
  36. [36] R. Alterovitz, S. Patil, and A. Derbakova, Rapidly-exploring roadmaps: weighing exploration vs. refinement in optimal motion planning, IEEE Int. Conf on Robotics and Automation, 2011, 3706–3712.
  37. [37] N.G. Repo,
  38. [38] B. Browning, J. Bruce, M. Bowling, and M. Veloso, STP: skills, tactics and plays for multi-robot control in adversarial environments, Journal of Systems and Control Engineering, 219(1), 2005, 33–52.
  39. [39] C. Fulgenzi, C. Tay, A. Spalanzani, and C. Laugier, Probabilistic navigation in dynamic environment using rapidly-exploring random trees and Gaussian processes, IEEE/RSJ 2008, Int. Conf. on Intelligent Robots and Systems, Nice, France, 2008, 1056–1062.
  40. [40] S. Sengupta, A parallel randomized path planner for robot navigation, International Journal of Advanced Robotic Systems, 3(3), 2006, 259–266.
  41. [41] D. Ferguson and A. Stentz, Anytime RRTs, Proc. IEEE Int. Conference on Intelligent Robots and Systems IROS, 2006.
  42. [42] M. Buckland, Programming game AI by example (Los Rios Boulevard Plano, TX: Wordware Publishing, 2005).
  43. [43] M. Waringo and D. Henrich, Efficient smoothing of piecewise linear paths with minimal deviation, IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, 2006, 3867–3872.
  44. [44] Research group.
  45. [45] Neuislenders robotics team,
  46. [46] R. Abiyev, N. Akkaya, and E. Aytac, Navigation of mobile robot in dynamic environments, IEEE Int. Conf. on Computer Science and Automation Engineering (CSAE), 3, 2012, 480–484.
  47. [47] grSim: RoboCup small size robot soccer simulator,

Important Links:

Go Back