CONTRIBUTIONS TO THE METHOD OF COORDINATE SPLITTING FOR SOLVING DIFFERENTIAL ALGEBRAIC EQUATIONS

Jason P. Frye and Brian C. Fabien

References

  1. [1] J. Yen and L.R. Petzold, An efficient Newton-type iteration for the numerical solution of highly oscillatory constrained multibody dynamic systems, SIAM Journal on Scientific Computing, 19 (5), 1998, 1513–1534.
  2. [2] J.P. Frye and B.C. Fabien, Modeling and simulation of nonholonomic Lagrangian dynamic systems, Proc. 21st IASTED Intl. Conf. on Modelling and Simulation, Banff, 2010, 228–234.
  3. [3] B.C. Fabien, Analytical system dynamics: Modeling and simulation (New York, NY: Springer, 2009).
  4. [4] L. Meirovitch, Methods of analytical dynamics (New York, NY: McGraw-Hill, 1970).
  5. [5] E. Hairer and G. Wanner, Solving ordinary differential equations II: Stiff and differential-algebraic problems (Berlin: Springer-Verlag, 1996).
  6. [6] C.W. Gear, Differential-algebraic equation index transformations, SIAM Journal Scientific and Statistical Computing, 9 (1), 1988, 39–47.
  7. [7] C.W. Gear, Differential algebraic equations, indices, and integral algebraic equations, SIAM Journal on Numerical Analysis, 27 (6), 1990, 1527–1534.
  8. [8] K.E. Brenan, S.L. Campbell, and L.R. Petzold, Numerical solutions of initial-value problems in differential-algebraic equations (Philadelphia: SIAM, 1996).
  9. [9] C.W. Gear, G.K. Gupta, and B.J. Leimkuhler, Automatic integration of the Euler-Lagrange equations with constraints, Journal of Computational and Applied Mathematics, 12, 1985, 77–90.
  10. [10] K. Arczewski and W. Blajer, A unified approach to the modelling of holonomic and nonholonomic mechanical systems, Mathematical and Computer Modelling of Dynamical Systems, 2 (3), 1996, 157–174.
  11. [11] X. Zhang, J.K. Mills, and W.L. Cleghorn, Coupling characteristics of rigid body motion and elastic deformation of a 3PRR parallel manipulator with flexible link, Multibody System Dynamics, 21 (2), 2009, 167–192.
  12. [12] J. García de Jal´on and E. Bayo, Kinematic and dynamic simulation of multibody systems: The real-time challenge (New York, NY: Springer-Verlag, 1993).
  13. [13] W.C. Rheinboldt, Differential algebraic systems as differential equations on manifolds, Mathematics of Computation, 43 (168), 1984, 473–482.
  14. [14] J. Yen, Constrained equations of motion in multibody dynamics as ODEs on manifolds, SIAM Journal on Numerical Analysis, 30 (2), 1993, 553–568.
  15. [15] F. Potra and J. Yen, Implicit numerical integration for Euler– Lagrange equations via tangent space parameterization, Mechanics of Structures and Machines, 19 (1), 1991, 1–18.
  16. [16] F. Potra and W.C. Rheinboldt, On the numerical solution of the Euler–Lagrange equations, Mechanics of Structures and Machines, 19, 1991, 76–98.
  17. [17] R.A. Layton, Principles of analytical system dynamics (New York, NY: Springer-Verlag, 1998).

Important Links:

Go Back