Qinghong Guo, Chris J.B. Macnab, and Jeff K. Pieper


  1. [1] M.H. Raibert, Legged robots that balance, (Cambridge, MA,USA: The MIT Press, 1986).
  2. [2] H. Rad, P. Gregorio, and M. Buehler, Design, modeling andcontrol of a hopping robot, in IEEE/RSJ Conference onIntelligent Robots and Systems, Yokohama, Japan, July 1993,1778–1785.
  3. [3] P. Gregorio, M. Ahmadi, and M. Buehler, Design, controland energetics of an electrically actuated legged robot, IEEETransactions on Systems Man, and Cybernetics B, 27(4), 1997,626–634.
  4. [4] B. Brown and G. Zeglin, The bow leg hopping robot, inIEEE International Conference on Robotics and Automation,Leuven, Belgium, May 1998, 781–786.
  5. [5] R. Altendorfer, D.E. Koditschek, and P. Holmes, Stabilityanalysis of legged locomotion models by symmetry-factoredreturn maps, International Journal of Robotics and Research,23(10–11), 2004, 979–999.
  6. [6] C. Francois and C. Samson, A new approach to the controlof the planar one-legged hopper, International Journal ofRobotics and Research, 17(11), 1998, 1150–1166.
  7. [7] S.-H. Hyon and T. Emura, Energy-preserving control of apassive one-legged running robot, Advanced Robotics, 18(4),2004, 357–381.
  8. [8] T. Ikeda, Y. Iwatani, K. Suse, and T. Mita, Analysis and designof running robots in touchdown phase, in IEEE InternationalConference on Control Applications, Kohala Coast-Island,Hawaii, USA, August 1999, 496–501.
  9. [9] S.-H. Hyon and T. Mita, Development of a biologically inspiredhopping robot, in IEEE International Conference on Roboticsand Automation, Washington DC, USA, May 2002, 3984–3991.
  10. [10] W. Zhang, G. Wang, T. Chambers, and W.E. Simon, Towarda folding-legged uniped that can learn to jump, in IEEEInternational Conference on Systems, Man, and Cybernetics,Orlando, FL, USA, October 1997, 4315–4319.
  11. [11] U. Saranli, W.J. Schwind, and D.E. Koditschek, Towardthe control of a multi-jointed, monoped runner, in IEEEInternational Conference on Robotics and Automation, Leuven,Belgium, May 1998, 2676–2682.
  12. [12] M.D. Berkemeier and R.S. Fearing, Sliding and hopping gaitsfor the underactuated acrobot, IEEE Transactions on Roboticsand Automation, 14(4), 1998, 629–634.
  13. [13] M. Miyazaki, M. Sampei, M. Koga, and A. Takahashi, A controlof underactuated hopping gait systems: acrobot example, inIEEE Conference on Decision and Control, Sydney, Australia,December 2000, 4797–4802.
  14. [14] J.W. Hurst, J.E. Chestnutt, and A.A. Rizzi, Design andphilosophy of the BiMASC, a highly dynamic biped, in IEEEInternational Conference on Robotics and Automation, Roma,Italy, April 2007, 1863–1868.
  15. [15] I. Poulakakis and J.W. Grizzle, “Monopedal running control:slip embedding and virtual constraint controller, in IEEE/RSJInternational Conference on Intelligent Robots and Systems,San Diego, CA, USA, October 2007, 323–330.
  16. [16] E.H. Pelc, M.A. Daley, and D.P. Ferris, Resonant hopping of arobot controlled by an artificial neural oscillator, Bioinspirationand Biomimetics, 3(2), 2008, 1–11.
  17. [17] Q. Guo, C.J.B. Macnab, and J.K. Pieper, Hopping on evenground and up stairs with a single articulated leg, Journal ofIntelligent and Robotic Systems, 53(4), 2008, 331–358.
  18. [18] V.T. Haimo, Finite-time controller, SIAM Journal of Controland Optics, 24(4), 1986, 760–770.
  19. [19] S.P. Bhat and B.S. Bernstein, Finite-time stability of countinu-ous autonomous systems, SIAM Journal of Control and Optics,38(3), 2000, 751–766.
  20. [20] Y. Feng, X. Yu, and Z. Man, Non-singular terminal slidingmode control of rigid manipulators, Automatica, 38(12), 2002,2159–2167.
  21. [21] S. Yu, X. Yu, B. Shirinzadeh, and Z. Man, Continuous finite-time control for robotic manipulators with terminal slidingmode, Automatica, 41(12), 2005, 1957–1964.
  22. [22] K.-B. Park and T. Tsuji, Terminal sliding mode control ofsecond-order nonlinear uncertain systems, International Jour-nal of Robust and Nonlinear Control, 9(11), 1999, 769–780.
  23. [23] M.W. Spong, S. Hutchinson, and M. Vidyasagar, Robot mod-eling and control. (Hoboken, NJ, USA: John Wiley & Sons,2006).
  24. [24] K. Kondak and G. Hommel, Control of online computation ofstable movement for biped robots, in IEEE/RSJ InternationalConference on Intelligent Robots and Systems, Las Vegas, NV,USA, October 2003, 874–879.
  25. [25] E. Westervelt, Toward a coherent framework for the controlof planar biped locomotion, Ph.D. dissertation, University ofMichigan, Ann Arbor, MI, USA, 2003.
  26. [26] M. Wisse, Essentials of dynamic walking – analysis and designof two-legged robots, Ph.D. dissertation, Delft University ofTechnology, The Netherlands, 2004.
  27. [27] B. Morris, Stabilizing highly dynamic locomotion in planarbipedal robots with dimension reducing control, Ph.D. disser-tation, University of Michigan, Ann Arbor, MI, USA, 2008.
  28. [28] D.S. Mitrinovi´c, Analytic inequalities. (Berlin, Germany:Springer-Verlag, 1970).
  29. [29] J.J. Slotine and W. Li, Applied nonlinear control (EnglewoodCliffs, NJ, USA: Prentice Hall, 1991).

Important Links:

Go Back