TRAJECTORY TRACKING OF WHEELED MOBILE ROBOTS USING A KINEMATICAL FUZZY CONTROLLER

Mohammad Hadi Amoozgar, Seyed Hossein Sadati, and Khalil Alipour

References

  1. [1] H. Chen, M.M. Ma, H. Wang, Z. Liu, and Z. Cai, Movinghorizon H∞ tracking control of wheeled mobile robots with actuator saturation, IEEE Trans. on Control System Technology, 17(2), 2009, 449–457.
  2. [2] Y. Kanayama, Y. Kimura, F. Miyazaki, and T. Noguchi, A stable tracking control method for a non-holonomic mobile robot, IEEE/RSJ International Workshop on Intelligent Robots and Systems, Osaka, Japan, 1991, 1236–1241.
  3. [3] S.H. Sadati, K. Alipour, and M. Behroozi, A combination of neural network and ritz method for robust motion planning of differentially-driven mobile robots along calculated modular paths, International Journal of Robotics and Automation, 23(3), 2008, 187–198.
  4. [4] A. De Luca and M.D. Di Benedetto, Control of nonholonomic systems via dynamic compensation, KYBERNETICA, 29(6), 1993, 593–608.
  5. [5] R.W. Brockett, Asymptotic stability and feedback stabilization, in R.W. Brockett, R.S. Millman and H.J. Sussmann (eds.), Differential Geometric Control Theory, (Birkhauser: Boston, MA, 1983), 181–191.
  6. [6] I. Kolmanovsky and N.H. McClamroch, Developments in non-holonomic control problems, IEEE Control Systems Magazine, 15, 1995, 20–36.
  7. [7] G. Oriolo, A. Luca, and M. Vandittelli, “WMR control via dynamic feedback linearization: Design, implementation, and experimental validation, IEEE Transactions on Control Systems Technology, 10, 2002, 835–852.
  8. [8] F. Pourboghrat and M.P. Karlsson, Adaptive control of dynamic mobile robots with nonholonomic constraints, Intexnational Journal of Computers and Electrical Engineering, 28, 2002, 241–253.
  9. [9] G. Klancar and I. Skrjanc, Tracking-error model-based predictive control for mobile robots in real time, Robotics and Autonomous Systems, 55, 2007, 460–469.
  10. [10] K. Kanjanawanishkul, M. Hofmeister, and A. Zell, Smooth reference tracking of a mobile robot using nonlinear model predictive control, European Conference on Mobile Robots (ECMR), Mlini/Dubrovnik, Croatia, 2009.
  11. [11] R. Fierro and F.L. Lewis, Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics, International Journal of Robotic System, 14(3), 1997, 149–163.
  12. [12] Y. Duan, B. Cui, and H. Yang, Robot navigation based on fuzzy RL algorithm, (Springer Verlag Berlin, Heidelberg,2008), 391–399.
  13. [13] K.G. Jolly, R. Sreerama Kumar, and R. Vijayakumar, An artificial neural network based dynamic controller for A robot in a multi-agent system, International Journal of Neurocomputing, 73(1–3), 2009, 283–294.
  14. [14] Z. Hendzel and M. Szuster, Discrete neural dynamic programming in wheeled mobile robot control, Journal of Communications in Nonlinear Science and Numerical Simulation, 16(5), 2011, 2355–2362.
  15. [15] C.-Y. Chen, T.-H.g S. Li, Y.-C. Yeh and C.-C. Chang, Design and Implementation of an Adaptive Sliding-Mode Dynamic Controller for Wheeled Mobile Robots, International Journal of Mechatronics, 19(2), 2009, 156–166.
  16. [16] L. Cárdenas, O. Castillo, T. Aguilar, and N. Cázarez, Tracking control for a unicycle mobile robot using a fuzzy logic controller, (Springer Verlag, StudFuzz, 2007), 208, 243–253.
  17. [17] F.M. Raimondi and M. Melluso, A new fuzzy dynamics controller for autonomous vehicles with nonholonomic constraints, International Journal of Robotics and Autonomous Systems, 52, 2005, 115–131.
  18. [18] S.D. Wang and C.K. Lin, Adaptive tuning of the fuzzy controller for robots, International Journal of Fuzzy Sets and Systems, 110(2), 2000, 351–363.
  19. [19] R. Martinez, O. Castillo, and L.T. Aguilar, Intelligent control for a perturbed autonomous wheeled mobile robot using type-2 fuzzy logic and genetic algorithms, International Journal of Automation, Mobile Robotics and Intelligent Systems, 2, 2008, 12–22.
  20. [20] X. Gao, M. Ma, and H. Chen, Guaranteed cost tracking scheme for wheeled mobile robot with actuator saturations via T–S fuzzy model, IEEE Int. Conference on Fuzzy Systems and Knowledge Discovery, Shandong, China, 2008, 85–89.
  21. [21] J.C. Alexander and J.H. Maddocks, On the kinematics ofwheeled mobile robots, International Journal of Robotics Research, 8(5), 1989, 15–27.
  22. [22] M.H. Amoozgar, K. Alipour, and S.H. Sadati, A fuzzy logic-based formation controller for wheeled mobile robots, Industrial Robot, 38(3), 2011, 269–281.

Important Links:

Go Back