Tarek M. Hamdani, Mohamed A. Khabou, Adel M. Alimi, and Fakhri Karray


  1. [1] L. Kanal, Patterns in pattern recognition, IEEE Transactionson Information Theory, 20, 1974, 597–722.
  2. [2] R. Bajaj and S. Chaudhury, Signature verification using mul-tiple neural classifiers, Pattern Recognition, 30, 1997, 1–7.
  3. [3] J. Mao, K. Mohiuddin, and T. Fujisaki, A two-stage multi-network ocr system with a soft pre-classifier and a networkselector, 3rd Int. Conf. Document Analysis Recognition, 1,Montreal, Quebec, Canada, 1995, 78–81.
  4. [4] Y. Huang and C. Suen, A method of combining multipleexperts for the recognition of unconstrained handwritten nu-merals, IEEE Transactions on Pattern Analysis and MachineIntelligence, 17 (1), 1995, 90–94.
  5. [5] A. Rahman and M. Fairhurst, A multiple-expert decisioncombination strategy for handwritten character recognition,Int. Conf. Computational Linguistics, Speech and DocumentProcess, Calcutta, India, February 18–20, 1998, A23–A28.
  6. [6] T. Yuan, T. Ting, L. Jiming, L. Whan, and L. Win, Off-linerecognition of chinese handwriting by multifeature and mul-tilevel classification, IEEE Transactions on Pattern Analysisand Machine Intelligence, 20 (5), 1998, 556–561.
  7. [7] L. Larkey and B. Croft, Combining classifiers in text catego-rization, 19th Conf. Research and Development in InformationRetrieval, Zurich, Switzerland, 1996, 289–297.
  8. [8] G. Fumera and F. Roli, A theoretical and experimental anal-ysis of linear combiners for multiple classifier systems, IEEETransactions on Pattern Analysis and Machine Intelligence,27(6), 2005, 942–956.
  9. [9] L. Yang, Z. Qin, and R. Huang, Design of a multiple classifiersystem, 3rd Int. Conf. Machine Learning and Cybernetics,Shanghai, August 26–29, 2004.
  10. [10] L. Kuncheva and L. Jain, Designing classifier fusion systemsby genetic algorithms, IEEE Transactions on EvolutionaryComputation, 4 (4), 2000, 327–336.
  11. [11] K. Sirlantzis, M. Fairhurst, and M. Hoque, Multiple classifiersystem Genetic Algorithms for multi-classifier system config-uration: a case study in character recognition, ser. LNCS.(Springer-Verlag: Berlin, Heidelberg, 2001), 2096, 99–108.
  12. [12] J. Ghosh, Multple classifier systems, ser. LNCS. (Springer-Verlag: Berlin, Heidelberg, 2002), vol. 2364, Multiclassifiersystems: back to the future, 1–15.
  13. [13] J. Kittler, M. Hatef, R. Duin, and J. Matas, On combining clas-sifiers, IEEE Transactions on Pattern Analysis and MachineIntelligence, 20 (3), 1998, 226–239.
  14. [14] A. Rahman and M. Fairhurst, Multiple classifier decisioncombination strategies for character recognition: a review,International Journal in Document Analysis and Recognition,5, 2003, 166–194.
  15. [15] R. Ranawana and V. Palade, Multi classifier systems a reviewand roadmap for developers, International Journal of HybridIntelligent Systems, 3 (1), 2006, 35–61. [Online]. Available:
  16. [16] T.K. Ho, Multiple classifier Systems, Complexity of classifica-tion problems and comparative advantages of combined classi-fiers, ser. LNCS (Springer-Verlag: Berlin, Heidelberg, 2000),1857, 97–106.
  17. [17] L. Kuncheva, Diversity in multiple classifier systems (editorial),Information Fusion, 6 (1), 2005, 3–4.
  18. [18] R. Duin, The combining classifier: to train or not to train?16th Int. Conf. Pattern Recognition ICPR16, II. Quebec City,Canada: IEEE Computer Society Press, August 11–15, 2002,765–770.
  19. [19] D. Tax, M. Breukelen, R. Duin, and J. Kittler, Combiningmultiple classifiers by averaging or by multiplying? PatternRecognition, 33, 2000, 1475–1485.
  20. [20] J. Kittler and F. Alkoot, Sum versus vote fusion in multipleclassifier systems, IEEE Transactions on Pattern Analysis andMachine Intelligence, 25 (1), 2003, 110–115.221
  21. [21] L. Kuncheva, A theoretical study on six classifier fusion strate-gies, IEEE Transactions on Pattern Analysis and MachineIntelligence, 24 (2), 2002, 281–286.
  22. [22] J. Kittler and F. Roli, Multiple classifier systems, ser. LNCS.(Springer Verlag: Cagliari, Italy, Berlin, 2000), 1857.
  23. [23] A. Rahman and M. Fairhurst, Towards a theoretical frameworkfor multilayer decision fusion, 3rd IEE European Workshopon Handwriting Analysis Recognition, no. 1998/440, Brussels,Belgium, July 14–15, 1998, 7/1–7/7.
  24. [24] A. Rahman and M. Fairhurst, A new hybrid approach incombining multiple experts to recognise handwritten numerals,Pattern Recognition Letters, 18 (8), 1997, 781–790.
  25. [25] J. Paik, S. Cho, K. Lee, and Y. Lee, Multiple recognizerssystem using two-stage combination, 13th Int. Conf. PatternRecognition, 4, August 25–29, 1996, 581–585.
  26. [26] A. Rahman and M. Fairhurst, Serial combination of multipleexperts: a unified evaluation, Pattern Analysis and Application,2, 1999, 292–311.
  27. [27] C. Tung and J. Lee, 2-stage character recognition by detectionand correction of erroneously-identified characters, 2nd Int.Conf. on Document Analysis Recognition, no. 93TH0578-5,1993, 834–837.
  28. [28] L. Vuurpijl and L. Schomaker, A framework for using multipleclassifiers in a multiple-agent architecture, 3rd European Work-shop on Handwriting Analysis Recognition, Brussels, Belgium,1998, 8/1–8/6.
  29. [29] F. Smieja, The pandemonium system of reflective agents, IEEETransactions on Neural Networks, 7 (1), 1996, 97–106.
  30. [30] O. Selfridge, Pandemonium: a paradigm for learning, Sympo-sium held at the National Physical Lab, 1958, 513–526.
  31. [31] FIPA, FIPA Iterated Contract Net Interaction Protocol Spec-ification, Foundation for Intelligent Physical Agents Std.SC00 030H, 2002.
  32. [32] J. Odell, H.V.D. Parunak, and B. Bauer, Representingagent interaction protocols in uml, in P. Ciancarini andM. Wooldridge (Eds), in Agent-Oriented Software Engineering(Berlin: Springer, 2001), 121–140.
  33. [33] A. Frank and A. Asuncion, UCI machine learning repository,2010 [Online]. Available:
  34. [34] H. Yezid, Conception et impl´ementation dun syst´eme de multiclassification bas´e sur la n´egociation des classifieurs intelligents,Master’s Thesis, University of Tunis, Tunis, Tunisia, February2005.
  35. [35] M. Hamdani, M. Alimi, and F. Karray, Enhancing the structureand parameters of the centers for bbf fuzzy neural networkclassifier construction based on data structure, IEEE Int. JointConf. on Neural Networks, Hong Kong, June 2008, 3174–3180,art. no. 4634247.
  36. [36] M. Hamdani and M. Alimi, A multi-agent design for patternrecognition systems based on multi-classifiers context, Int.Conf. on Machine Intelligence ACIDCA-ICMI05, 30, Tozeur,Tunisia, November 2005, 778–781.

Important Links:

Go Back