A FUZZY WAVELET-BASED APPROACH TO A NOVEL IMAGE DENOISING ENGINE

Mohamed Abd-ElRahman Abdou

References

  1. [1] M.C. Motwani, M.C. Gadiya, R.C. Motwani, and F.C. Harris,Survey of image denoising techniques, http://www.cse.unr.edu/∼fredh/papers/conf/034-asoidt/paper.pdf, accessed 2009.
  2. [2] H. Guo, J.E. Odegard, M. Lang, R.A. Gopinath, I.W. Se-lesnick, and C.S. Burrus, Wavelet based speckle reductionwith application to SAR based ATD/R, First InternationalConference on Image Processing, Vol. 1, 1994, 75–79.
  3. [3] R.D. Nowak, Wavelet based rician noise removal, IEEE Trans-actions on Image Processing, 8(10), 1999, 1408.
  4. [4] T. Acharya and A.K. Ray, Image processing principles andapplications, (Wiley, 2005).
  5. [5] R. Yang, L. Yin, M. Gabbouj, J. Astola, and Y. Neuvo,Optimal weighted median filters under structural constraints,IEEE Transactions on Signal Processing, 43, 1995, 591–604.
  6. [6] R.C. Hardie and K.E. Barner, Rank conditioned rank selectionfilters for signal restoration, IEEE Transactions an ImageProcessing, 3, 1994, 192–206.
  7. [7] A.B. Hamza, P. Luque, J. Martinez, and R. Roman, Removingnoise and preserving details with relaxed median filters, Journalof Mathematical Imaging and Vision, 11 (2), 1999, 161–177.
  8. [8] R. Edward, Mathematical morphology in image processing(NY: Marcel Dekker Inc., 1993).
  9. [9] A.K. Jain, Fundamentals of digital image processing (Prentice-Hall, 1989).
  10. [10] D.L. Donoho and I.M. Johnstone, Ideal spatial adaption viawavelet shrinkage, Biometrika, 81, 1994, 425–455.
  11. [11] D.L. Donoho and I.M. Johnstone, Adapting to unknownsmoothness via wavelet shrinkage, Journal of the AmericanStatistical Association, 90 (432), 1995, 1200–1224.
  12. [12] M.B. Tayel and M.A. Abdou, A hybrid segmentation andcompression channel for medical images with region of interest,WSEAS Transactions on Signal Processing, 2 (2), 2006, 245–252.
  13. [13] M.A. Abdou and M.B. Tayel, An automatic bi-channel com-pression technique for medical images, International Journalof Robotics and Automation, 23 (1), 2008, 15–21.
  14. [14] D.L. Donoho, De-noising by soft-thresholding, IEEE Transac-tions Information Theory, 41 (3), 1995, 613–627, http://wwwstat.stanford.edu/∼donoho/Reports/1992/denoiserelease3.ps.Z, accessed 2008.
  15. [15] I.K. Fodor and C. Kamath, Denoising through wavelet shrink-age: An empirical study, Center for Applied Science Com-puting, Lawrence Livermore National Laboratory, July 27,2001.339
  16. [16] V. Strela, Denoising via block Wiener filtering in waveletdomain, Third European Congress of Mathematics, Barcelona,Birkh¨auser Verlag 2000.
  17. [17] H. Choi and R.G. Baraniuk, Analysis of wavelet domain Wienerfilters, IEEE Int. Symposium Time-Frequency and Time-ScaleAnalysis, Pittsburgh, 1998, http://citeseer.ist.psu.edu/article/choi98analysis.html, accessed 2008.
  18. [18] H. Zhang, A. Nosratinia, and R.O. Wells, Jr., Image denoisingvia wavelet-domain spatially adaptive FIR Wiener filtering,IEEE Proc. Int. Conf. Acoustics, Speech, Signal Processing,Istanbul, Turkey, 2000.
  19. [19] S. Mallat, A theory for multiresolution signal decomposition:the wavelet representation, IEEE Transactions on PatternAnalysis Machine Intelligence, 11 (7), 1989, 674–693.
  20. [20] J.S. Lim, Two-dimensional signal and image processing (En-glewood Cliffs, NJ: Prentice Hall, 1990).
  21. [21] J. Canny, A Computational approach to edge detection, IEEETransactions on Pattern Analysis and Machine Intelligence,8(6), 1986, 679–698.
  22. [22] J.R. Parker, Algorithms for image processing and computervision (New York: John Wiley & Sons, Inc., 1997).
  23. [23] R.M. Haralick and L.G. Shapiro, Computer and Robot Vision(Volume I, Addison-Wesley, 1992).
  24. [24] S. Schulte, V. Witte, M. Nachtegael, D. Weken, and E. Kerre,Fuzzy random impulse noise reduction method, Fuzzy Sets andSystems, 158, 2007, 270–283.

Important Links:

Go Back