Smajo Bisanovic, Mensur Hajro, and Muris Dlakic
[1] G.B. Sheble, Solution of the unit commitment problem by themethod of unit periods, IEEE Transactions on Power Systems,5 (1), 1990, 257–260. [2] T.S. Dillon, K.W. Edwin, H.D. Kochs, & R.J. Taud, Inte-ger programming approach to the problem of optimal unitcommitment with probabilistic reserve determination, IEEETransactions on Power Apparatus and Systems, 97(6), 1978,2154–2166. [3] L.L. Garver, Power generation scheduling by integer program-ming development of theory, IEEE Transactions on PowerApparatus and Systems, 18, 1963, 730–735. [4] W.L. Snyder, Jr, H.D. Powell, Jr, & J.C. Rayburn, Dynamicprogramming approach to unit commitment, IEEE Transac-tions on Power Apparatus and Systems, 2(2), 1987, 339–350. [5] P.G. Lovery, Generating unit commitment by dynamic pro-gramming, IEEE Transactions on Power Apparatus and Sys-tems, 85 (5), 1966, 422–426. [6] C.K. Pang, G.B. Sheble, & F. Albuyeh, Evaluation of dynamicprogramming based methods and multiple area representationfor thermal unit commitment, IEEE Transactions on PowerApparatus and Systems, 100 (3), 1981, 1212–1218. [7] W.J. Hobbs, G. Hermon, S. Warner, & G.B. Sheble, An en-hanced dynamic programming approach for unit commitment,IEEE Transactions on Power Systems, 3 (3), 1988, 1201–1205. [8] C.C. Su & Y.Y. Hsu, Fuzzy dynamic programming: Anapplication to unit commitment, IEEE Transactions on PowerSystems, 6 (3), 1991, 1231–1237. [9] Z. Ouyang & S.M. Shahidehpour, An intelligent dynamic pro-gramming for unit commitment application, IEEE Transac-tions on Power Systems, 6 (3), 1991, 1203–1209. [10] F. Zhuang & F.D. Galiana, Toward a more rigorous andpractical unit commitment by Lagrangian relaxation, IEEETransactions on Power Systems, 3 (2), 1988, 763–770. [11] C. Wang & S.M. Shahidehpour, Ramp-rate limits in unitcommitment and economic dispatch incorporating rotor fatigueeffect, IEEE Transactions on Power Systems, 9 (3), 1994,1539–1545. [12] C. Wang & S.M. Shahidehpour, Optimal generation schedulingwith ramping costs, IEEE Transactions on Power Systems,10 (1), 1995, 60–67. [13] A.J. Svoboda, C.L. Tseng, C.A. Li, & R.B. Johnson, Short-term resource scheduling with ramping constraints, IEEETransactions on Power Systems, 12 (1), 1997, 77–83. [14] S.Y. Lai & R. Baldick, Unit commitment with ramp multipliers,IEEE Transactions on Power Systems, 14 (1), 1999, 58–64. [15] W. Ongsakul & N. Petcharaks, Unit commitment by enhancedadaptive Lagrangian relaxation, IEEE Transactions on PowerSystems, 19 (1), 2004, 620–628. [16] S.M. Shahidehpour, H. Yamin, & Z. Li, Market operationsin electric power systems: Forecasting, scheduling and riskmanagement, First Edition (New York: John Wiley & Sons,2002). [17] T. Li & S.M. Shahidehpour, Price-based unit commitment: Acase of Lagrangian relaxations versus mixed integer program-ming, IEEE Transactions on Power Systems, 20 (4), 2005,2015–2025. [18] A. Turgeon, Optimal scheduling of thermal generating units,IEEE Transactions on Automatic Control, 23 (6), 1978, 1000–1005. [19] H. Habibollahzadeh & J.A. Bubenko, Application of decom-position techniques to short-term operation planning of hy-drothermal power system, IEEE Transactions on Power Sys-tems, 1 (1), 1986, 41–47. [20] H. Ma & S.M. Shahidehpour, Transmission-constrained unitcommitment based on Benders decomposition, InternationalJournal of Electrical Power and Energy Systems, 20 (4), 1998,287–294. [21] J.M. Arroyo & A.J. Conejo, Optimal response of a thermal unitto an electricity spot market, IEEE Transactions on PowerSystems, 15 (3), 2000, 1098–1104. [22] R. Gollmer, M.P. Nowak, W. R¨omisch, & R. Schultz, Unitcommitment in power generation – A basic model and someextensions, Annals of Operations Research, 96, 2000, 167–189. [23] J. Medina, V.H. Quintana, A.J. Conejo, & F.P. Thoden, Acomparison of interior-point codes for medium-term hydro-thermal coordination, IEEE Transactions on Power Systems,13 (3), 1998, 836–843. [24] J. Medina, V.H. Quintana, & A.J. Conejo, A clipping-offinterior-point technique for medium-term hydro-thermal coor-dination, IEEE Transactions on Power Systems, 14 (1), 1999,266–273. [25] S. Bisanovic, M. Hajro, & M. Dlakic, Hydrothermal self-scheduling problem in a day-ahead electricity market, ElectricPower Systems Research, ELSEVIER, 78 (9), 2008, 1579–1596. [26] N.P. Padhy, Unit commitment – A bibliographical survey, IEEETransactions on Power Systems, 19 (2), 2004, 1196–1205. [27] Z. Ouyang & S.M. Shahidehpour, A hybrid artificial neuralnetwork/dynamic programming approach to unit commitment,IEEE Transactions on Power Systems, 7 (1), 1992, 236–242. [28] H. Sasaki, M. Watabable, J. Kubokawa, N. Yorino, & R.Yokoyama, A solution method of unit commitment by artificialneural networks, IEEE Transactions on Power Systems, 7 (1),1992, 974–985. [29] F. Zhuang & F.D. Galiana, Unit commitment by simulatedannealing, IEEE Transactions on Power Systems, 5 (1), 1990,311–318. [30] A.H. Mantawy, Y.L. Abdel-Magid, & S.Z. Selim, A simulatedannealing algorithm for unit commitment, IEEE Transactionson Power Systems, 13 (1), 1998, 197–204. [31] G.K. Purushothama & L. Jenkins, Simulated annealing withlocal search – A hybrid algorithm for unit commitment, IEEETransactions on Power Systems, 18 (1), 2003, 273–278. [32] S.A. Kazarlis, A.G. Bakirtzis, & V. Petridis, A genetic algo-rithm solution to the unit commitment problem, IEEE Trans-actions on Power Systems, 11 (1), 1996, 83–92. [33] C.E. Zoumas, A.G. Bakirtzis, J.B. Theocharis, & V. Petridis,A genetic algorithm solution approach to the hydrothermalcoordination problem, IEEE Transactions on Power Systems,19 (2), 2004, 1356–1364. [34] K.A. Juste, H. Kita, E. Tanaka, & J. Hasegawa, An evolutionaryprogramming solution to the unit commitment problem, IEEETransactions on Power Systems, 14 (4), 1999, 1452–1459. [35] J.M. Arroyo & A.J. Conejo, A parallel repair genetic algorithmto solve the unit commitment problem, IEEE Transactions onPower Systems, 17 (4), 2002, 1216–1224. [36] C.C.A. Rajan & M.R. Mohan, An evolutionary programming-based tabu search method for solving the unit commitmentproblem, IEEE Transactions on Power Systems, 19 (1), 2004,577–585. [37] I.G. Damousis, A.G. Bakirtzis, & P.S. Dokopoulos, A solutionto the unit commitment problem using integer-coded geneticalgorithm, IEEE Transactions on Power Systems, 19 (2), 2004,1165–1172. [38] M. Madrigal & V.H. Quintana, An interior-point/cutting-plane method to solve unit commitment problems, IEEETransactions on Power Systems, 15 (3), 2000, 1022–1027. [39] S.J. Wright, Primal-dual interior-point methods (Philadelphia:SIAM, 1997). [40] R.J. Vanderbei, Linear programming: Foundations and exten-sions, Second Edition (Boston, MA: Kluwer Academic Pub-lishers, 1997). [41] I.J. Lustig, R.E. Marsten, & D.F. Shano, Interior point methodsfor linear programming: Computational state of the art, ORSAJournal on Computing, 6 (1), 1994, 1–14.94 [42] X. Xu, P.F. Hung, & Y. Ye, A simplified homogeneous and self-dual linear programming algorithm and its implementation,Annals of Operations Research, 62(1), 1996, 151–171. [43] E.D. Andersen & K.D. Andersen, The MOSEK interior pointoptimizer for linear programming: An implementation of thehomogeneous algorithm, in H. Frenk, K. Roos, T. Terlaky,and S. Zhang, (Eds.), High performance optimization (KluwerAcademic Publishers, 2000), 197–232. [44] A.J. Wood & B.F. Wollenberg, Power generation, operationand control, Second Edition (New York: John Wiley & Sons,1996). [45] A.B. Keha, I.R. Farias, & G.L. Nemhauser, Models for rep-resenting piecewise linear cost functions, Operations ResearchLetters, 32(1), 2004, 44–48. [46] S.E. Khatib & F.D. Galiana, Negotiating bilateral contractsin electricity markets, IEEE Transactions on Power Systems,22 (2), 2007, 553–562.
Important Links:
Go Back